当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multivalent assembly of flexible polymer chains into supramolecular nanofibers
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-09-09 , DOI: 10.1021/jacs.0c07651
Christopher B Cooper 1 , Jiheong Kang 1 , Yikai Yin 2 , Zhiao Yu 1 , Hung-Chin Wu 1 , Shayla Nikzad 1 , Yuto Ochiai 1, 3 , Hongping Yan 1 , Wei Cai 2, 4 , Zhenan Bao 1
Affiliation  

Polymeric materials in nature regularly employ ordered, hierarchical structures in order to perform unique and precise functions. Importantly, these structures are often formed and stabilized by the cooperative summation of many weak interactions as opposed to the independent association of a few strong bonds. Here, we show that synthetic, flexible polymer chains with periodically placed and directional dynamic bonds collectively assemble into supramolecular nanofibers when the overall molecular weight is below the polymer's critical entanglement molecular weight. This causes bulk films of long polymer chains to have faster dynamics than films of shorter polymer chains of identical chemical composition. The formation of nanofibers increases the bulk film modulus by over an order of magnitude and delays the onset of terminal flow by more than 100°C, while still remaining solution processable. Systematic investigation of different polymer chain architectures and dynamic bonding moieties along with coarse-grained molecular dynamics simulations illuminate governing structure-function relationships that determine a polymer's capacity to form supramolecular nanofibers. This report of the cooperative assembly of multivalent polymer chains into hierarchical, supramolecular structures contributes to our fundamental understanding of designing biomimetic functional materials.

中文翻译:

柔性聚合物链的多价组装成超分子纳米纤维

自然界中的聚合物材料通常采用有序的分层结构,以执行独特而精确的功能。重要的是,这些结构通常是通过许多弱相互作用的合作求和来形成和稳定的,而不是一些强键的独立关联。在这里,我们展示了当总分子量低于聚合物的临界缠结分子量时,具有周期性放置和定向动态键的合成柔性聚合物链共同组装成超分子纳米纤维。这导致长聚合物链的本体膜比具有相同化学成分的较短聚合物链的膜具有更快的动力学。纳米纤维的形成使体膜模量增加了一个数量级以上,并将终端流动的开始延迟了 100°C 以上,同时仍保持溶液可加工性。对不同聚合物链结构和动态键合部分的系统研究以及粗粒分子动力学模拟阐明了决定聚合物形成超分子纳米纤维能力的结构-功能关系。这份关于多价聚合物链协同组装成分层、超分子结构的报告有助于我们对设计仿生功能材料的基本理解。对不同聚合物链结构和动态键合部分的系统研究以及粗粒分子动力学模拟阐明了决定聚合物形成超分子纳米纤维能力的结构-功能关系。这份关于多价聚合物链协同组装成分层、超分子结构的报告有助于我们对设计仿生功能材料的基本理解。对不同聚合物链结构和动态键合部分的系统研究以及粗粒分子动力学模拟阐明了决定聚合物形成超分子纳米纤维能力的结构-功能关系。这份关于多价聚合物链协同组装成分层、超分子结构的报告有助于我们对设计仿生功能材料的基本理解。
更新日期:2020-09-09
down
wechat
bug