当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous Sulfite Electrolysis and Hydrogen Production Using Ni Foam-Based Three-Dimensional Electrodes.
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-09-09 , DOI: 10.1021/acs.est.0c04190
Raúl A Márquez-Montes 1 , Kenta Kawashima 2 , Kobe M Vo 3 , David Chávez-Flores 1 , Virginia H Collins-Martínez 4 , C Buddie Mullins 2, 3, 5 , Víctor H Ramos-Sánchez 1, 6
Affiliation  

The electrochemical oxidation of sulfite ions offers encouraging advantages for large-scale hydrogen production, while sulfur dioxide emissions can be effectively used to obtain value-added byproducts. Herein, the performance and stability during sulfite electrolysis under alkaline conditions are evaluated. Nickel foam (NF) substrates were functionalized as the anode and cathode through electrochemical deposition of palladium and chemical oxidation to carry out the sulfite electro-oxidation and hydrogen evolution reactions, respectively. A combined analytical approach in which a robust electrochemical flow cell was coupled to different in situ and ex situ measurements was successfully implemented to monitor the activity and stability during electrolysis. Overall, satisfactory sulfite conversion and hydrogen production efficiencies (>90%) at 10 mA·cm–2 were mainly attributed to the use of NF in three-dimensional electrodes with a large surface area and enhanced mass transfer. Furthermore, stabilization processes associated with electrochemical dissolution and sulfur crossover through the membrane induced specific changes in the chemical and physical properties of the electrodes after electrolysis. This study demonstrates that NF-based electrocatalysts can be incorporated in an efficient electrochemical flow cell system for sulfite electrolysis and hydrogen production, with potential applications at a large scale.

中文翻译:

使用基于镍泡沫的三维电极同时进行亚硫酸盐电解和制氢。

亚硫酸根离子的电化学氧化为大规模制氢提供了令人鼓舞的优势,而二氧化硫的排放可以有效地用于获得增值副产物。在此,评价碱性条件下亚硫酸盐电解时的性能和稳定性。泡沫镍(NF)基材通过钯的电化学沉积和化学氧化功能分别作为阳极和阴极,分别进行亚硫酸盐的电氧化和氢的释放反应。一种组合分析方法,其中将强大的电化学流动池耦合到不同的原位异位测量已成功实施,以监测电解过程中的活性和稳定性。总体而言,在10 mA·cm –2时令人满意的亚硫酸盐转化率和制氢效率(> 90%)主要归因于在较大表面积的三维电极中使用了NF,并提高了传质。此外,与电化学溶解和穿过膜的硫交叉相关的稳定化过程在电解后引起电极化学和物理性质的特定变化。这项研究表明,可以将基于NF的电催化剂并入有效的电化学流通池系统中,以进行亚硫酸盐电解和制氢,并且具有潜在的大规模应用前景。
更新日期:2020-10-06
down
wechat
bug