当前位置: X-MOL 学术Mech. Based Des. Struct. Mach. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Active vibration control responses of a smart microshell reinforced with graphene nanoplatelets and subjected to external force
Mechanics Based Design of Structures and Machines ( IF 2.9 ) Pub Date : 2020-09-09 , DOI: 10.1080/15397734.2020.1815543
Lianghua Ma 1 , Xiaoliang Liu 2 , Aghil Shavalipour 3
Affiliation  

Abstract

Smart control and dynamic investigation of a graphene nanoplatelets composite (GPLRC) cylindrical microshell surrounded by a piezoelectric layer as actuator and sensor based on a numerical solution method called generalized differential quadrature method are presented for the first time. The current structure is under an external load. The strains and stresses can be determined through via the first-order shear deformable theory. For accessing to various mass densities, thermal expansion as well as Poisson ratio, the rule of mixture is applied, although, a modified Halpin–Tsai theory is used for obtaining the module of elasticity. The external voltage is applied to the sensor layer, while a proportional-derivative (PD) controller has been utilized for controlling output of sensor. GPLRC’s boundary conditions are derived through governing equations of the cylindrical microshell using energy method known as Hamilton’s principle. The outcomes show that the PD controller, viscoelastic foundation, slenderness factor (L/R), external voltage, and GPL’s weight fraction have a considerable impact on the amplitude, and vibration behavior of a smart GPLRC cylindrical microshell. As an applicable result in related industries, the parameter and consideration of the PD controller have a positive effect on the static and dynamic behaviors of the microstructure subjected to external load.



中文翻译:

石墨烯纳米片增强并承受外力的智能微壳的主动振动控制响应

摘要

首次提出了基于广义微分求积法的数值求解方法对由压电层包围的石墨烯纳米片复合材料(GPLRC)圆柱形微壳作为执行器和传感器的智能控制和动态研究。当前结构处于外部负载下。应变和应力可以通过一阶剪切变形理论确定。为了获得各种质量密度、热膨胀和泊松比,应用了混合规则,但使用改进的 Halpin-Tsai 理论来获得弹性模量。外部电压施加到传感器层,而比例微分 (PD) 控制器已用于控制传感器的输出。GPLRC 的边界条件是通过使用称为 Hamilton 原理的能量方法通过圆柱微壳的控制方程得出的。结果表明,PD 控制器、粘弹性基础、细长因子 (L / R )、外部电压和 GPL 的重量分数对智能 GPLRC 圆柱形微壳的振幅和振动行为有相当大的影响。作为相关行业的应用结果,PD控制器的参数和考虑对微结构在外载荷作用下的静态和动态行为有积极的影响。

更新日期:2020-09-09
down
wechat
bug