当前位置: X-MOL 学术Mach. Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of the chip adhesion mechanisms in micro-drilling of high ceramic-content particle-filled GFRPs
Machining Science and Technology ( IF 2.7 ) Pub Date : 2020-09-09 , DOI: 10.1080/10910344.2020.1765177
Xin Huang 1 , Chengyong Wang 1 , Tao Yang 1 , Bingmiao Liao 1 , Xingrong He 1 , Lijuan Zheng 1
Affiliation  

Abstract Glass-fiber reinforced polymers (GFRP) are widely used for printed circuit boards (PCBs) in automotive and aircraft structural applications. The performance of micro-drilling in high ceramic-content particle-filled GFRP heavily influences the signal transmission quality and speed available from these PCBs. Chip adhesion is one of the biggest obstacles to high-performance micro-drilling especially for holes with large depth-to-diameter ratios. This paper offers the first study of the chip adhesion characteristics and formation mechanisms seen when micro-drilling ceramic particle-filled GFRP components, which is the substrate material of PCBs. A direct-contact temperature measurement method is presented to measure the temperatures seen when drilling the laminated composite material. The effects of processing parameters on drilling temperatures and chip adhesion were investigated. A method to control chip adhesion is suggested. The results show that chip adhesion can be divided into four stages. Effective measures to reduce chip adhesion include reducing the drill speed, appropriately increasing the feed rate, and, controlling the number of drilled holes before the drill is sharpened. Also, the use of cold forced air can aid heat dissipation and effective chip extraction. As a result, the chip adhesion was reduced.

中文翻译:

高陶瓷含量颗粒填充玻璃钢微孔钻削中切屑粘附机制的研究

摘要 玻璃纤维增​​强聚合物 (GFRP) 广泛用于汽车和飞机结构应用中的印刷电路板 (PCB)。在高陶瓷含量颗粒填充的 GFRP 中进行微钻孔的性能严重影响这些 PCB 的信号传输质量和速度。切屑粘附是高性能微钻孔的最大障碍之一,尤其是对于深径比大的孔。本文首次研究了微钻孔陶瓷颗粒填充的 GFRP 组件时看到的芯片粘附特性和形成机制,这是 PCB 的基板材料。提出了一种直接接触温度测量方法来测量在对层压复合材料钻孔时看到的温度。研究了加工参数对钻孔温度和切屑附着力的影响。提出了一种控制芯片粘附的方法。结果表明,芯片粘附可分为四个阶段。减少切屑粘附的有效措施包括降低钻速,适当增加进给量,以及在钻头磨锐前控制钻孔的数量。此外,使用冷强制空气有助于散热和有效的芯片提取。结果,芯片附着力降低。在磨尖钻头之前控制钻孔的数量。此外,使用冷强制空气有助于散热和有效的芯片提取。结果,芯片附着力降低。在磨尖钻头之前控制钻孔的数量。此外,使用冷强制空气有助于散热和有效的芯片提取。结果,芯片附着力降低。
更新日期:2020-09-09
down
wechat
bug