当前位置: X-MOL 学术Optik › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of g-C3N4 / ZnO heterostructure photocatalyst for enhanced visible degradation of organic dye
Optik ( IF 3.1 ) Pub Date : 2020-09-09 , DOI: 10.1016/j.ijleo.2020.165548
R. Manimozhi , M. Mathankumar , A.P. Gnana Prakash

The heptazine ring structure and medium bandgap make graphitic carbon nitride (g-C3N4) as a good visible light photocatalyst utilizing solar energy. g-C3N4 was synthesised by utilizing melamine pyrolysis. The g-C3N4 / ZnO nanocomposite prepared by hydrothermal method and resulting product was characterised and investigated photocatalytic decomposition of crystal violet under solar light. The two prominent peaks of pure g-C3N4 in XRD results corresponds to inter-layer structural packing and characteristics interplanar staking peaks of aromatic systems respectively. The calculated interplanar distance of the aromatic unit was 0.326 nm. FESEM images reveals that ZnO formed like a hexagonal rod and g-C3N4 / ZnO formed like a multi layered rod. The magnitude of transition energy calculated using UV DRS spectra was found to be 2.7 eV for g-C3N4 / ZnO nanocomposite and 3.14 eV for ZnO. The nanocomposite showed higher photocatalytic efficiency (97 %) compared to pristine because, the heterojunction present between ZnO and g-C3N4 improves the charge carrier separation of photo generated electron and hole. The scavenging experiment confirms that, photo generated holes play a major role in crystal violet degradation process.



中文翻译:

gC 3 N 4 / ZnO异质结构光催化剂的合成用于增强有机染料的可见光降解

庚嗪环结构和中等带隙使石墨氮化碳(gC 3 N 4)成为利用太阳能的良好可见光光催化剂。利用三聚氰胺热解合成了gC 3 N 4。对水热法制备的gC 3 N 4 / ZnO纳米复合材料进行了表征,并研究了太阳光下结晶紫的光催化分解。纯gC 3 N 4的两个突出峰在XRD中的结果分别对应于芳香体系的层间结构堆积和特征面间突峰。计算出的芳族单元的平面间距离为0.326nm。FESEM图像显示ZnO像六边形棒状形成,而gC 3 N 4 / ZnO像多层棒状形成。发现使用UV DRS光谱计算出的跃迁能量强度对于gC 3 N 4 / ZnO纳米复合材料为2.7 eV,对于ZnO为3.14 eV。与原始相比,纳米复合材料显示出更高的光催化效率(97%),因为ZnO和gC 3 N 4之间存在异质结改善了光生电子和空穴的电荷载流子分离。清除实验证实,光生空穴在结晶紫降解过程中起主要作用。

更新日期:2020-09-09
down
wechat
bug