当前位置: X-MOL 学术J. Nanopart. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced performance of organic solar cells with multifunctional silica-coated Au nanobowtie core-shell structure
Journal of Nanoparticle Research ( IF 2.1 ) Pub Date : 2020-09-09 , DOI: 10.1007/s11051-020-05008-0
Mengjia Jin , Qiao Zheng , Guochen Ma , Jiaxiong He , Yunfeng Lai , Jinling Yu , Xinghui Wang , Hongjie Jia , Shuying Cheng

The multifunctional silica-coated Au nanobowtie (GNB@SiO2) core-shell structure was embedded in organic solar cells (OSCs), and an intense performance promotion of the devices was achieved by optimizing the shape and the size of the GNB@SiO2. The light absorption of the active layer was increased with GNB@SiO2 doping concentration increasing until the doping concentration exceeds 10 nM. The devices obtain the best J-V characteristics when GNB@SiO2 doping concentration is 10 nM. Comparing with that of the control cells, the optimal performance of the devices with GNB@SiO2 incorporated was significantly increased by 47%. The finite-difference time-domain method was used to simulate the special asymmetry shape and the size of the multifunctional GNB@SiO2 impact on the performance of the OSCs. The electric field intensity |E|2 in the different planes revealed that the local surface plasmon resonance (LSPR) and far-field scattering effect played an important role in the light absorption of the devices. The cooperation effect of LSPR near-field and the far-field scattering resulted in the electric field redistribution of the active layer as the result of the absorption enhanced.



中文翻译:

具有多功能二氧化硅涂层的金纳米领核-壳结构的有机太阳能电池的性能增强

将多功能二氧化硅包覆的金纳米弓(GNB @ SiO 2)核壳结构嵌入有机太阳能电池(OSC)中,并且通过优化GNB @ SiO 2的形状和尺寸实现了器件的强烈性能提升。。随着GNB @ SiO 2掺杂浓度的增加,活性层的光吸收增加,直到掺杂浓度超过10nM。当GNB @ SiO 2掺杂浓度为10 nM时,器件获得最佳的合资特性。与控制单元相比,带有GNB @ SiO 2的设备的最佳性能合并的数量显着增加了47%。时域有限差分法被用来模拟特殊的不对称形状,多功能GNB @ SiO 2的尺寸对OSC的性能产生影响。电场强度| E | 图2在不同平面上显示,局部表面等离子体共振(LSPR)和远场散射效应在器件的光吸收中起着重要作用。LSPR近场和远场散射的协同作用导致了活性层的电场重新分布,这是吸收增强的结果。

更新日期:2020-09-10
down
wechat
bug