当前位置: X-MOL 学术Neural Plast. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Reconfiguration of Functional Topology in Human Brain Networks: From Resting to Task States.
Neural Plasticity ( IF 3.0 ) Pub Date : 2020-09-08 , DOI: 10.1155/2020/8837615
Wenhai Zhang 1, 2 , Fanggui Tang 1 , Xiaolin Zhou 3 , Hong Li 4
Affiliation  

Task demands evoke an intrinsic functional network and flexibly engage multiple distributed networks. However, it is unclear how functional topologies dynamically reconfigure during task performance. Here, we selected the resting- and task-state (emotion and working-memory) functional connectivity data of 81 health subjects from the high-quality HCP data. We used the network-based statistic (NBS) toolbox and the Brain Connectivity Toolbox (BCT) to compute the topological features of functional networks for the resting and task states. Graph-theoretic analysis indicated that under high threshold, a small number of long-distance connections dominated functional networks of emotion and working memory that exhibit distinct long connectivity patterns. Correspondently, task-relevant functional nodes shifted their roles from within-module to between-module: the number of connector hubs (mainly in emotional networks) and kinless hubs (mainly in working-memory networks) increased while provincial hubs disappeared. Moreover, the global properties of assortativity, global efficiency, and transitivity decreased, suggesting that task demands break the intrinsic balance between local and global couplings among brain regions and cause functional networks which tend to be more separated than the resting state. These results characterize dynamic reconfiguration of large-scale distributed networks from resting state to task state and provide evidence for the understanding of the organization principle behind the functional architecture of task-state networks.

中文翻译:

人脑网络中功能拓扑的动态重构:从静止状态到任务状态。

任务需求唤起一个内在的功能网络,并灵活地参与多个分布式网络。然而,目前还不清楚功能拓扑如何在任务执行期间动态重新配置。在这里,我们从高质量的 HCP 数据中选择了 81 名健康受试者的静息和任务状态(情绪和工作记忆)功能连接数据。我们使用基于网络的统计 (NBS) 工具箱和大脑连接工具箱 (BCT) 来计算功能网络在休息和任务状态下的拓扑特征。图论分析表明,在高阈值下,少数长距离连接主导了情绪和工作记忆的功能网络,这些网络表现出明显的长连接模式。相应地,任务相关的功能节点将它们的角色从模块内转移到模块间:连接器集线器(主要在情感网络中)和无亲属集线器(主要在工作记忆网络中)的数量增加,而省级集线器消失了。此外,分类性、全局效率和传递性的全局特性下降,表明任务需求打破了大脑区域之间局部和全局耦合之间的内在平衡,导致功能网络比静息状态更加分离。这些结果表征了大规模分布式网络从静止状态到任务状态的动态重构,并为理解任务状态网络功能架构背后的组织原理提供了证据。连接枢纽(主要在情感网络中)和无亲属枢纽(主要在工作记忆网络中)的数量增加,而省级枢纽消失了。此外,分类性、全局效率和传递性的全局特性下降,表明任务需求打破了大脑区域之间局部和全局耦合之间的内在平衡,导致功能网络比静息状态更加分离。这些结果表征了大规模分布式网络从静止状态到任务状态的动态重构,并为理解任务状态网络功能架构背后的组织原理提供了证据。连接枢纽(主要在情感网络中)和无亲属枢纽(主要在工作记忆网络中)的数量增加,而省级枢纽消失了。此外,分类性、全局效率和传递性的全局特性下降,表明任务需求打破了大脑区域之间局部和全局耦合之间的内在平衡,导致功能网络比静息状态更加分离。这些结果表征了大规模分布式网络从静止状态到任务状态的动态重构,并为理解任务状态网络功能架构背后的组织原理提供了证据。全局效率和传递性下降,表明任务需求打破了大脑区域之间局部和全局耦合之间的内在平衡,导致功能网络比静息状态更加分离。这些结果表征了大规模分布式网络从静止状态到任务状态的动态重构,并为理解任务状态网络功能架构背后的组织原理提供了证据。全局效率和传递性下降,表明任务需求打破了大脑区域之间局部和全局耦合之间的内在平衡,导致功能网络比静息状态更加分离。这些结果表征了大规模分布式网络从静止状态到任务状态的动态重构,并为理解任务状态网络功能架构背后的组织原理提供了证据。
更新日期:2020-09-08
down
wechat
bug