当前位置: X-MOL 学术ChemSusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Functionalization of NiO Nanocatalyst for Enhanced Water Oxidation by Electronic Structure Engineering.
ChemSusChem ( IF 7.5 ) Pub Date : 2020-09-08 , DOI: 10.1002/cssc.202001716
Lizhou Fan 1 , Biaobiao Zhang 1 , Zhen Qiu 2 , N V R Aditya Dharanipragada 3 , Brian J J Timmer 1 , Fuguo Zhang 1 , Xia Sheng 1 , Tianqi Liu 1 , Qijun Meng 1 , A Ken Inge 3 , Tomas Edvinsson 2 , Licheng Sun 1, 4, 5
Affiliation  

Tuning the local environment of nanomaterial‐based catalysts has emerged as an effective approach to optimize their oxygen evolution reaction (OER) performance, yet the controlled electronic modulation around surface active sites remains a great challenge. Herein, directed electronic modulation of NiO nanoparticles was achieved by simple surface molecular modification with small organic molecules. By adjusting the electronic properties of modifying molecules, the local electronic structure was rationally tailored and a close electronic structure‐activity relationship was discovered: the increasing electron‐withdrawing modification readily decreased the electron density around surface Ni sites, accelerating the reaction kinetics and improving OER activity, and vice versa. Detailed investigation by operando Raman spectroelectrochemistry revealed that the electron‐withdrawing modification facilitates the charge‐transfer kinetics, stimulates the catalyst reconstruction, and promotes abundant high‐valent γ‐NiOOH reactive species generation. The NiO−C6F5 catalyst, with the optimized electronic environment, exhibited superior performance towards water oxidation. This work provides a well‐designed and effective approach for heterogeneous catalyst fabrication under the molecular level.

中文翻译:

通过电子结构工程对 NiO 纳米催化剂进行分子功能化以增强水氧化。

调整纳米材料催化剂的局部环境已成为优化析氧反应(OER)性能的有效方法,但表面活性位点周围的受控电子调制仍然是一个巨大的挑战。在此,通过用小有机分子进行简单的表面分子修饰,实现了 NiO 纳米粒子的定向电子调制。通过调整修饰分子的电子性质,合理调整局部电子结构,发现了紧密的电子构效关系:增加吸电子修饰容易降低表面Ni位点周围的电子密度,加速反应动力学并提高OER活动,反之亦然。操作拉曼光谱电化学的详细研究表明,吸电子修饰促进了电荷转移动力学,刺激了催化剂重构,并促进了丰富的高价γ-NiOOH反应物种的生成。NiO−C 6 F 5催化剂具有优化的电子环境,表现出优异的水氧化性能。这项工作为分子水平下的多相催化剂制造提供了一种精心设计且有效的方法。
更新日期:2020-09-08
down
wechat
bug