当前位置: X-MOL 学术Comput. Methods Programs Biomed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A case study of poly (aryl ether sulfone) hemodialysis membrane interactions with human blood: Molecular dynamics simulation and experimental analyses.
Computer Methods and Programs in Biomedicine ( IF 6.1 ) Pub Date : 2020-09-08 , DOI: 10.1016/j.cmpb.2020.105742
Arash Mollahosseini 1 , Srija Argumeedi 1 , Amira Abdelrasoul 2 , Ahmed Shoker 3
Affiliation  

Patients with end-stage renal diseases (ESRD) require specific health cares as the accumulation of toxins due to the lack of kidney functionality would affect their lives. However, the mortality rate is still high due to cardiovascular diseases, socks, etc. A majority of patients with chronic kidney disease (CKD) require hemodialysis services. Blood purifying membranes, as the main component of hemodialysis setups, however, still suffer from lack of optimum biocompatibility, which results in morbidity and mortality of hemodialysis service receiving patients. The goal of the present case study is to have an in-depth understanding of the current blood-hemodialysis membrane interactions occurring during hemodialysis sessions using poly (aryl ether sulfone)-poly (vinyl pyrrolidone) (PAES-PVP) membrane. Attenuated total reflectance-Fourier transmission infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and solid-state nuclear magnetic resonance (SSNMR) spectroscopy were used to assess the initial chemical structure of the PAES-PVP membrane along with the variations after with the infections with human blood. Furthermore, scanning electron microscopy (SEM) and Transition electron microscopy (TEM) were used to visualize the structural variation of the membrane, blood aggregations, and blood clots on the membrane surface. Besides, Molecular dynamics (MD) simulation was used to assess the interaction of PAES-PVP with major human blood proteins, in terms of interaction energy, which is a novel contribution to the area. The macromolecules (human serum albumin (HSA), human serum transferrin (TRF), and human fibrinogen (HFG)) were chosen from the plasma protein component. These protein structures were chosen based on their different molecular size. Three advanced spectroscopy techniques and two advanced visualization techniques were used for the assessment of the membranes. Spectroscopy studies revealed amine related peak displacement and intensity shifts as indices for attachment of biological species to the polymeric membrane surfaces. Raman peaks around 370, 798, and 1299 cm−1, which experienced significant shifts that were related to carbon-nitrogen and sulfur-oxygen bonds due to protein adhesion. Visualization techniques illustrated blood protein fouling patterns and extracellular vesicles’ presence in the pore structures into membranes. The findings highlight the importance of whole structure biocompatibility improvement, rather than only focusing on surface modifications of hemodialysis membranes. Molecular dynamics simulation assessment showed various interaction behaviors for different proteins suggesting molecular weight and active residues of the protein macromolecules play an important role in interacting with polymeric structure. FB had the highest interaction (4,274,749.07 kcal/mol) and binding (10,370.90 kcal/mol) energy with the PAES-PVP structure. TRF owned the lowest interaction energy with respect to its lower molecular weight and fewer active residue count.



中文翻译:

聚(芳基醚砜)血液透析膜与人血相互作用的案例研究:分子动力学模拟和实验分析。

患有终末期肾病(ESRD)的患者需要特殊的保健,因为由于缺乏肾功能而导致的毒素积累会影响他们的生活。但是,由于心血管疾病,袜子等原因,死亡率仍然很高。大多数患有慢性肾脏疾病(CKD)的患者都需要血液透析服务。然而,血液净化膜作为血液透析设备的主要组成部分,仍然缺乏最佳的生物相容性,从而导致接受血液透析服务的患者的发病率和死亡率。本案例研究的目的是深入了解使用聚(芳基醚砜)-聚(乙烯基吡咯烷酮)(PAES-PVP)膜在血液透析过程中发生的当前血液-血液透析膜相互作用。衰减全反射傅里叶红外光谱(ATR-FTIR),拉曼光谱和固态核磁共振(SSNMR)光谱用于评估PAES-PVP膜的初始化学结构以及感染后的变化用人类的血液。此外,使用扫描电子显微镜(SEM)和过渡电子显微镜(TEM)可视化膜的结构变化,血液聚集和膜表面的血块。此外,利用分子动力学(MD)模拟法以相互作用能的形式评估了PAES-PVP与主要人类血液蛋白的相互作用,这是对该领域的新贡献。大分子(人血清白蛋白(HSA),人血清转铁蛋白(TRF),从血浆蛋白成分中选择了人参和人纤维蛋白原(HFG)。根据它们的不同分子大小选择这些蛋白质结构。三种先进的光谱技术和两种先进的可视化技术用于评估膜。光谱研究表明,胺相关的峰位移和强度位移是生物物种附着到聚合物膜表面的指标。拉曼峰在370、798和1299厘米附近 光谱研究表明,胺相关的峰位移和强度位移是生物物种附着到聚合物膜表面的指标。拉曼峰在370、798和1299厘米附近 光谱研究表明,胺相关的峰位移和强度位移是生物物种附着到聚合物膜表面的指标。拉曼峰在370、798和1299厘米附近-1,由于蛋白质的粘附,其经历了与碳-氮和硫-氧键有关的重大变化。可视化技术说明了血液蛋白的结垢模式和细胞外小泡在膜孔结构中的存在。这些发现强调了整体结构生物相容性改善的重要性,而不是仅仅着眼于血液透析膜的表面修饰。分子动力学模拟评估显示了不同蛋白质的各种相互作用行为,表明蛋白质大分子的分子量和活性残基在与聚合物结构相互作用中起重要作用。FB与PAES-PVP结构具有最高的相互作用(4,274,749.07 kcal / mol)和结合能(10,370.90 kcal / mol)。

更新日期:2020-09-08
down
wechat
bug