当前位置: X-MOL 学术Biopolymers › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Variation in the ratio of curli and phosphoethanolamine cellulose associated with biofilm architecture and properties
Biopolymers ( IF 3.2 ) Pub Date : 2020-09-07 , DOI: 10.1002/bip.23395
Jamie Jeffries 1 , Wiriya Thongsomboon 2 , Joshua Alan Visser 2 , Kyle Enriquez 2 , Deborah Yager 2 , Lynette Cegelski 2
Affiliation  

Bacterial biofilms are communities of bacteria entangled in a self‐produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid‐polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum‐of‐the‐parts 13C solid‐state nuclear magnetic resonance (NMR) analysis to define the curli‐to‐pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well‐studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid‐air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic‐associated) and the strain itself.

中文翻译:

卷曲和磷酸乙醇胺纤维素比例的变化与生物膜结构和特性相关

细菌生物膜是纠缠在自产细胞外基质 (ECM) 中的细菌群落。大肠杆菌指导两种不溶性生物聚合物、卷曲淀粉样纤维和磷酸乙醇胺 (pEtN) 纤维素的组装,以构建卓越的生物膜结构。强烈的好奇心围绕着细菌如何利用这些淀粉样多糖复合物来构建生物膜,以及这些生物聚合物如何使细菌群落受益。定义涉及不溶性聚合物组件的 ECM 组成对分析提出了独特的挑战,因此,将菌株与定量 ECM 分子相关性进行比较。在这项工作中,我们展示了部分 13C 固态核磁共振 (NMR) 分析的结果,以定义大肠杆菌实验室 K12 菌株的分离 ECM 中的卷曲与 pEtN 纤维素比率, AR3110。我们比较并对比了 AR3110 和经过充分研究的临床分离株 UTI89 的成分分析和综合生物膜表型。从 AR3110 中分离出的 ECM 所含 pEtN 纤维素的量相对于卷曲含量是 UTI89 的两倍,揭示了菌株间基质组装原理的可塑性。在三个生物膜模型中研究了两个亲本菌株和一组相关基因突变体,检查:(a)琼脂上的大菌落,(b)液-气界面的薄膜,以及(c)塑料上的生物量积累。我们在这些菌株的直接比较中描述了卷曲、纤维素和 pEtN 修饰对生物膜表型的影响。结果表明卷曲更强烈地影响粘附,而 pEtN 纤维素驱动内聚力。
更新日期:2020-09-07
down
wechat
bug