当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
Advanced Science ( IF 14.3 ) Pub Date : 2020-09-07 , DOI: 10.1002/advs.202001675
Anne-Laure Bulin 1 , Mans Broekgaarden 1 , Frédéric Chaput 2 , Victor Baisamy 1 , Jan Garrevoet 3 , Benoît Busser 4, 5 , Dennis Brueckner 3, 6 , Antonia Youssef 1, 7 , Jean-Luc Ravanat 7 , Christophe Dujardin 8 , Vincent Motto-Ros 8 , Frédéric Lerouge 2 , Sylvain Bohic 1 , Lucie Sancey 4 , Hélène Elleaume 1
Affiliation  

To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down‐convert X‐rays into photons with energies ranging from UV to near‐infrared. During radiotherapy, these scintillating properties amplify radiation‐induced damage by UV‐C emission or photodynamic effects. Additionally, nanoscintillators that contain high‐Z elements are likely to induce another, currently unexplored effect: radiation dose‐enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X‐rays by high‐Z elements compared to tissues, resulting in increased production of tissue‐damaging photo‐ and Auger electrons. In this study, Geant4 simulations reveal that rare‐earth composite LaF3:Ce nanoscintillators effectively generate photo‐ and Auger‐electrons upon orthovoltage X‐rays. 3D spatially resolved X‐ray fluorescence microtomography shows that LaF3:Ce highly concentrates in microtumors and enhances radiotherapy in an X‐ray energy‐dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF3:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose‐enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers.

中文翻译:

放射剂量增强是稀土复合纳米闪烁体在胶质母细胞瘤临床前模型中的有效放射治疗效果

为了改善胶质母细胞瘤的预后,需要创新的放射治疗方案来增强可耐受放射剂量的效果,同时保护周围组织。在这种背景下,纳米闪烁体成为新兴的放射治疗药物,可将 X 射线下转换为能量范围从紫外线到近红外线的光子。在放射治疗过程中,这些闪烁特性会放大 UV-C 发射或光动力效应引起的辐射损伤。此外,含有高 Z 元素的纳米闪烁体可能会引发另一种目前尚未探索的效应:辐射剂量增强。这种现象源于与组织相比,高 Z 元素对正电压 X 射线的光电吸收更高,导致组织损伤性光电子和俄歇电子的产生增加。在这项研究中,Geant4 模拟揭示了稀土复合材料 LaF 3 :Ce 纳米闪烁体在正电压 X 射线下有效地产生光电子和俄歇电子。3D 空间分辨 X 射线荧光显微断层扫描显示 LaF 3 :Ce 高度集中在微肿瘤中,并以 X 射线能量依赖性方式增强放射治疗。在原位胶质母细胞瘤的侵袭性同系模型中,脑内注射LaF 3 :Ce具有良好的耐受性,并且在接受单色同步辐射治疗的受试者中15%实现了肿瘤完全缓解。这项研究为纳米闪烁体增强辐射剂量提供了明确的证据,从而产生了显着的放射治疗效果。总而言之,纳米闪烁体对于增强胶质母细胞瘤和其他抗辐射癌症的放射治疗的局灶损伤具有宝贵的特性。
更新日期:2020-10-22
down
wechat
bug