当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanometer-Scale Uniform Conductance Switching in Molecular Memristors.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-09-06 , DOI: 10.1002/adma.202004370
Sreetosh Goswami 1, 2, 3 , Debalina Deb 4 , Agnès Tempez 5 , Marc Chaigneau 5 , Santi Prasad Rath 5, 6 , Manohar Lal 7 , Ariando 1, 2, 3 , R Stanley Williams 8 , Sreebrata Goswami 6 , Thirumalai Venkatesan 1, 2, 3, 7, 9
Affiliation  

One common challenge highlighted in almost every review article on organic resistive memory is the lack of areal switching uniformity. This, in fact, is a puzzle because a molecular switching mechanism should ideally be isotropic and produce homogeneous current switching free from electroforming. Such a demonstration, however, remains elusive to date. The reports attempting to characterize a nanoscopic picture of switching in molecular films show random current spikes, just opposite to the expectation. Here, this longstanding conundrum is resolved by demonstrating 100% spatially homogeneous current switching (driven by molecular redox) in memristors based on Ru‐complexes of azo‐aromatic ligands. Through a concurrent nanoscopic spatial mapping using conductive atomic force microscopy and in operando tip‐enhanced Raman spectroscopy (both with resolution <7 nm), it is shown that molecular switching in the films is uniform from hundreds of micrometers down to the nanoscale and that conductance value exactly correlates with spectroscopically determined molecular redox states. This provides a deterministic molecular route to obtain spatially homogeneous, forming‐free switching that can conceivably overcome the chronic problems of robustness, consistency, reproducibility, and scalability in organic memristors.

中文翻译:

分子忆阻器中的纳米级均匀电导转换。

几乎每篇有关有机电阻式存储器的评论文章都强调指出的一个普遍挑战是缺乏区域转换的均匀性。实际上,这是一个难题,因为理想情况下,分子开关机制应该是各向同性的,并且可以产生没有电铸的均匀电流开关。但是,迄今为止,这种演示仍然难以捉摸。试图表征分子膜转换的纳米图像的报告显示出随机的电流尖峰,与预期相反。在这里,通过展示基于偶氮-芳族配体的Ru-络合物的忆阻器中的100%空间均质电流切换(由分子氧化还原驱动),解决了这一长期难题。通过使用导电原子力显微镜和操作性尖端增强拉曼光谱仪(均分辨率<7 nm)同时进行的纳米级空间映射,表明膜中的分子转换从数百微米到纳米级都是均匀的,并且具有导电性值与光谱确定的分子氧化还原状态完全相关。这提供了确定性的分子路线,以获得空间均匀,无变形的转换,可以想象地克服了有机忆阻器的耐用性,一致性,可再现性和可扩展性等长期问题。
更新日期:2020-10-20
down
wechat
bug