当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molten salts in the light of corrosion mitigation strategies and embedded with nanoparticles to enhance the thermophysical properties for CSP plants
Solar Energy Materials and Solar Cells ( IF 6.9 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.solmat.2020.110768
Adnan Ibrahim , Hu Peng , Ali Riaz , Muhammad Abdul Basit , Umair Rashid , Abdul Basit

Abstract Solar power has prominently been showing potential as a means to sustainable, dispatchable and affordable source of energy while attracting huge attention for scientists as a viable alternative for next-generation energy usage. Solar Salt, KNO3-NaNO3 (40–60 wt%) mixture, has been considered indispensable as it is the most technologically mature molten salt for CSP plants. However, molten salt-based heat transfer fluids (HTF) and/or thermal energy storage (TES) media have been facing critical challenging issues of severe corrosion and lower specific heat capacity. Considering these problems, more effective studies should be conducted to explore the alternative nitrate salt mixtures, chlorides, fluorides and carbonates focusing on the widening thermal stability range, and to enhance thermal properties and to lower corrosion rate. Thereafter, scientists and engineers would be able to incorporate these variations of molten salts with an economical industrial way into CSP applications. In this context, the present review thoroughly investigates the Solar Salt, HitecXL, Hitec, LiNaKNO3, NaKMg chloride, NaKZn chloride, LiNaK fluoride and (LiNaK)2CO3 salts in terms of their basic thermal properties, corrosion rate and their contingent behaviour on nanoparticles; regardless of discrepancies and incompatibilities. Moreover, this article highlighted some corrosion mitigation approaches that could enhance the efficacy of molten salts for next-generation CSP plants. Also, there is a still need to further investigate the long-term thermal stability of molten salt-based nanofluids by researchers on an urgent basis.

中文翻译:

根据腐蚀缓解策略并嵌入纳米粒子的熔盐可增强 CSP 设备的热物理特性

摘要 太阳能作为一种可持续的、可调度的和负担得起的能源手段,已显着显示出潜力,同时作为下一代能源使用的可行替代方案吸引了科学家的极大关注。太阳能盐,KNO3-NaNO3 (40–60 wt%) 混合物,被认为是必不可少的,因为它是 CSP 发电厂技术最成熟的熔盐。然而,基于熔盐的传热流体 (HTF) 和/或热能储存 (TES) 介质一直面临着严重腐蚀和比热容较低的关键挑战问题。考虑到这些问题,应开展更有效的研究,探索替代硝酸盐混合物、氯化物、氟化物和碳酸盐的替代品,重点是扩大热稳定性范围,并提高热性能和降低腐蚀速率。此后,科学家和工程师将能够以经济的工业方式将这些熔盐的变化纳入 CSP 应用中。在此背景下,本综述彻底研究了太阳能盐、HitecXL、Hitec、LiNaKNO3、NaKMg 氯化物、NaKZn 氯化物、LiNaK 氟化物和 (LiNaK)2CO3 盐的基本热性能、腐蚀速率及其对纳米颗粒的偶然行为;不考虑差异和不兼容。此外,本文重点介绍了一些腐蚀缓解方法,这些方法可以提高熔盐对下一代 CSP 工厂的功效。此外,研究人员还迫切需要进一步研究基于熔盐的纳米流体的长期热稳定性。
更新日期:2021-01-01
down
wechat
bug