当前位置: X-MOL 学术J. Fluids Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid analytical/numerical modeling of nanosecond laser-induced micro-jets generated by liquid confining devices
Journal of Fluids and Structures ( IF 3.4 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.jfluidstructs.2020.103079
Hamid Ebrahimi Orimi , Sivakumar Narayanswamy , Christos Boutopoulos

Abstract The generation of micro-jets with pulsed laser irradiation is a key enabling technique for microfluidic devices, printers and needle-free drug injectors. Modeling approaches for such devices are essential to optimize their design and performance. Here we present a hybrid analytical/numerical model to simulate nanosecond laser-induced micro-jets generated by a dual-chamber liquid confining device. The simulated device consists of two chambers; the first one is closed and filled with a propellant liquid and the second is filled with the liquid to be ejected and equipped with a nozzle. Laser-induced cavitation is generated in the first chamber, which is separated by an elastic membrane from the second one, to reduce the thermo-mechanical impact of the absorbed laser energy on the liquid to be ejected. By modifying the generalized form of the Rayleigh–Plesset equation to account for the pressure variation inside the chamber, we show that the geometry of the liquid confining device affects drastically laser-induced bubble dynamics and the resulting jet ejection dynamics. We also demonstrate the effect of the membrane size, laser energy and nozzle size variation on the micro-jet dynamics. We found that such devices can generate micro-jets (velocity: 0.93 m/s to 48.39 m/s) suitable for micro-drop printing (volume: 0.097 nL to 7.68 nL). Although we focused on printing applications, the modeling approach presented here can be widely adapted for designing and optimizing needle-free drug injectors and microfluidic devices.

中文翻译:

液体限制装置产生的纳秒激光诱导微射流的混合分析/数值模拟

摘要 利用脉冲激光照射产生微射流是微流体设备、打印机和无针药物注射器的关键使能技术。此类设备的建模方法对于优化其设计和性能至关重要。在这里,我们提出了一个混合分析/数值模型来模拟由双室液体限制装置产生的纳秒激光诱导微射流。模拟装置由两个腔室组成;第一个是封闭的并填充有推进剂液体,第二个填充有待喷射的液体并配备有喷嘴。激光诱导空化在第一个腔室中产生,该腔室由弹性膜与第二个腔室隔开,以减少吸收的激光能量对要喷射的液体的热机械影响。通过修改 Rayleigh-Plesset 方程的广义形式来解释腔室内的压力变化,我们表明液体限制装置的几何形状会极大地影响激光诱导的气泡动力学和由此产生的射流喷射动力学。我们还展示了膜尺寸、激光能量和喷嘴尺寸变化对微射流动力学的影响。我们发现此类设备可以产生适合微滴打印(体积:0.097 nL 至 7.68 nL)的微射流(速度:0.93 m/s 至 48.39 m/s)。尽管我们专注于打印应用,但此处介绍的建模方法可广泛适用于设计和优化无针药物注射器和微流体设备。我们表明,液体限制装置的几何形状会极大地影响激光诱导的气泡动力学和由此产生的射流喷射动力学。我们还展示了膜尺寸、激光能量和喷嘴尺寸变化对微射流动力学的影响。我们发现此类设备可以产生适合微滴打印(体积:0.097 nL 至 7.68 nL)的微射流(速度:0.93 m/s 至 48.39 m/s)。尽管我们专注于打印应用,但此处介绍的建模方法可广泛适用于设计和优化无针药物注射器和微流体设备。我们表明,液体限制装置的几何形状会极大地影响激光诱导的气泡动力学和由此产生的射流喷射动力学。我们还展示了膜尺寸、激光能量和喷嘴尺寸变化对微射流动力学的影响。我们发现此类设备可以产生适合微滴打印(体积:0.097 nL 至 7.68 nL)的微射流(速度:0.93 m/s 至 48.39 m/s)。尽管我们专注于打印应用,但此处介绍的建模方法可广泛适用于设计和优化无针药物注射器和微流体设备。我们发现此类设备可以产生适合微滴打印(体积:0.097 nL 至 7.68 nL)的微射流(速度:0.93 m/s 至 48.39 m/s)。尽管我们专注于打印应用,但此处介绍的建模方法可广泛适用于设计和优化无针药物注射器和微流体设备。我们发现此类设备可以产生适合微滴打印(体积:0.097 nL 至 7.68 nL)的微射流(速度:0.93 m/s 至 48.39 m/s)。尽管我们专注于打印应用,但此处介绍的建模方法可广泛适用于设计和优化无针药物注射器和微流体设备。
更新日期:2020-10-01
down
wechat
bug