当前位置: X-MOL 学术BBA Mol. Cell Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Acute depletion of telomerase components DKC1 and NOP10 induces oxidative stress and disrupts ribosomal biogenesis via NPM1 and activation of the P53 pathway.
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research ( IF 4.6 ) Pub Date : 2020-09-07 , DOI: 10.1016/j.bbamcr.2020.118845
José Santiago Ibáñez-Cabellos 1 , Marta Seco-Cervera 1 , Carmen Picher-Latorre 2 , Gisselle Pérez-Machado 3 , José Luis García-Giménez 1 , Federico V Pallardó 1
Affiliation  

Mutations in DKC1, NOP10, and TINF2 genes, coding for proteins in telomerase and shelterin complexes, are responsible for diverse diseases known as telomeropathies and ribosomopathies, including dyskeratosis congenita (DC, ORPHA 1775). These genes contribute to the DC phenotype through mechanisms that are not completely understood. We previously demonstrated in models of DC that oxidative stress is an early and independent event that occurs prior to telomere shortening. To clarify the mechanisms that induce oxidative stress, we silenced genes DKC1, NOP10, and TINF2 with siRNA technology. With RNA array hybridisation, we found several altered pathways for each siRNA model. Afterwards, we identified common related genes. The silenced cell line with the most deregulated genes and pathways was siNOP10, followed by siDKC1, and then by siTINF2 to a lesser extent. The siDKC1 and siNOP10 models shared altered expression of genes in the p53 pathway, while siNOP10 and siTINF2 had the adherens junction pathway in common. We also observed that depletion of DKC1 and NOP10 H/ACA ribonucleoprotein produced ribosomal biogenesis impairment which, in turn, promoted p53 pathway activation. Finally, we found that those enzymes responsible for GSH synthesis were down-regulated in models of siDKC1 and siNOP10. In contrast, the silenced cells for TINF2 showed no disruption of ribosomal biogenesis or oxidative stress and did not produce p53 pathway activation. These results indicate that depletion of DKC1 and NOP10 promotes oxidative stress and disrupts ribosomal biogenesis which, in turn, activates the p53 pathway.



中文翻译:

端粒酶组分DKC1和NOP10的急性消耗会诱导氧化应激并通过NPM1破坏核糖体生物发生并激活P53途径。

突变DKC1NOP10,TINF2基因,编码端粒酶和shelterin络合物的蛋白质,负责称为telomeropathies和ribosomopathies,包括先天性角化不良(DC,ORPHA 1775)不同的疾病。这些基因通过尚不完全了解的机制有助于DC表型。我们之前在DC模型中证明,氧化应激是端粒缩短之前发生的早期且独立的事件。为了阐明诱导氧化应激的机制,我们沉默了基因DKC1NOP10TINF2siRNA技术。通过RNA阵列杂交,我们发现了每种siRNA模型的几种改变途径。之后,我们确定了常见的相关基因。具有最失调的基因和途径的沉默细胞系是siNOP10,其次是siDKC1,然后是siTINF2(程度较小)。siDKC1和siNOP10模型在p53途径中共享基因表达的改变,而siNOP10和siTINF2具有共同的粘附连接途径。我们还观察到DKC1和NOP10 H / ACA核糖核蛋白的耗竭会导致核糖体生物发生障碍,进而促进p53途径的激活。最后,我们发现在siDKC1和siNOP10模型中,负责GSH合成的那些酶被下调。相反,TINF2沉默的细胞显示没有核糖体生物发生或氧化应激的破坏,并且不产生p53途径激活。这些结果表明,DKC1NOP10的耗竭促进了氧化应激并破坏了核糖体的生物发生,继而激活了p53途径。

更新日期:2020-09-14
down
wechat
bug