当前位置: X-MOL 学术Cellulose › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic bacterial cellulose nanofibers for nucleoside recognition
Cellulose ( IF 4.9 ) Pub Date : 2020-09-07 , DOI: 10.1007/s10570-020-03425-x
Yeşeren Saylan , llgım Göktürk , Kristyna Pospiskova , Ivo Safarik , Adil Denizli

Abstract

Applications of nanomaterials to biological systems have received increased interest in the past decades. In particular, bacterial cellulose nanofibers can be utilized in a broad range of applications. Biomaterials have been produced on large-scale with high reproducibility by an inspiring method such as molecular imprinting. Herein, for the first time, magnetic bacterial cellulose nanofibers are designed by the molecular imprinting method as a novel adsorbent for selective and efficient recognition of thymidine nucleoside. In this process, magnetic bacterial cellulose nanofibers are silanized with 3-(trimethoxysilyl) propyl methacrylate and further polymerized with a hydrophilic monomer for templating thymidine via metal chelate coordination. They are characterized by several methods and then applied for thymidine recognition to optimize the adsorption conditions. Hereby, the effecting factors are evaluated, and the highest adsorption capacity is obtained as 431.3 mg/g in pH 9.0 at 25 °C. The selectivity is assessed with competitor nucleosides and highly selective (4.13 and 3.80 times) adsorption of thymidine at the same concentration of other nucleosides (cytidine and uridine) is observed. After multiple adsorption–desorption experiments, the magnetic bacterial cellulose nanofibers also provided high reusability capacity. The present new work holds excellent potential for nucleoside recognition by integrating molecular imprinting with magnetic bacterial cellulose nanofibers.

Graphic abstract



中文翻译:

磁性细菌纤维素纳米纤维用于核苷识别

摘要

在过去的几十年中,将纳米材料应用于生物系统受到了越来越多的关注。特别地,细菌纤维素纳米纤维可用于广泛的应用中。通过启发性的方法,例如分子印迹,已经大规模生产了具有高可重复性的生物材料。在此,首次通过分子印迹方法设计了磁性细菌纤维素纳米纤维,作为选择性和有效识别胸苷核苷的新型吸附剂。在该方法中,磁性细菌纤维素纳米纤维用甲基丙烯酸3-(三甲氧基甲硅烷基)丙酯硅烷化,然后进一步与亲水性单体聚合,以通过金属螯合配位来模板化胸苷。它们通过几种方法进行表征,然后应用于胸苷识别以优化吸附条件。由此,评估影响因素,并且在25℃下在pH 9.0下获得最高吸附容量为431.3mg / g。用竞争性核苷评估选择性,观察到在相同浓度的其他核苷(胞苷和尿苷)中胸苷的高选择性吸附(4.13和3.80倍)。经过多次吸附-解吸实验,磁性细菌纤维素纳米纤维还具有很高的可重复使用能力。通过结合分子印迹与磁性细菌纤维素纳米纤维,目前的新工作在核苷识别方面具有极好的潜力。在25°C下,pH 9.0下的最高吸附容量为431.3 mg / g。用竞争性核苷评估选择性,观察到在相同浓度的其他核苷(胞苷和尿苷)中胸苷的高选择性吸附(4.13和3.80倍)。经过多次吸附-解吸实验,磁性细菌纤维素纳米纤维还具有很高的可重复使用能力。通过将分子印迹与磁性细菌纤维素纳米纤维相结合,目前的新工作在核苷识别方面具有极好的潜力。在25°C下,pH 9.0下的最高吸附容量为431.3 mg / g。用竞争性核苷评估选择性,观察到在相同浓度的其他核苷(胞苷和尿苷)中胸苷的高选择性吸附(4.13和3.80倍)。经过多次吸附-解吸实验,磁性细菌纤维素纳米纤维还具有很高的可重复使用能力。通过结合分子印迹与磁性细菌纤维素纳米纤维,目前的新工作在核苷识别方面具有极好的潜力。经过多次吸附-解吸实验,磁性细菌纤维素纳米纤维还具有很高的可重复使用能力。通过结合分子印迹与磁性细菌纤维素纳米纤维,目前的新工作在核苷识别方面具有极好的潜力。经过多次吸附-解吸实验,磁性细菌纤维素纳米纤维还具有很高的可重复使用能力。通过结合分子印迹与磁性细菌纤维素纳米纤维,目前的新工作在核苷识别方面具有极好的潜力。

图形摘要

更新日期:2020-09-08
down
wechat
bug