当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient in-situ water adsorption for direct DME synthesis: robust computational modeling and multi-objective optimization
Gas Science and Engineering ( IF 5.285 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jngse.2020.103587
M. Bayat , A. Garmroodi Asil

Abstract The concept of in-situ water elimination in the novel integrated multifunctional reactor (MR) with the aim of increasing Dimethyl Ether (DME) production via direct method synthesis is investigated in the present study. Introducing continuous regenerative 4 A zeolite adsorbent in the moving bed reactor with syngas feed stream is considered an impressive improvement over the conventional fixed sorption enhanced reactor. In the absence of water adsorption, the validation results exhibit that the offered comprehensive 1-D heterogeneous model equipped with Unilan isotherm has an excellent agreement with industrial data. Also, the simulation results illustrate that around 35% and 25% elevation in the DME production rate and selectivity is obtained via effective water removal in the MR compared to the non-adsorbent configuration. Enjoying in-situ water removal in the MR, synthesis gas conversion plus methanol production is significantly improved. The multi-objective optimization of MR recruiting powerful NSGA-II algorithm with the purpose of maximizing DME production rate and selectivity is accomplished. Among the three distinct decision-making approaches, Shannon's Entropy presents better results according to the deviation index parameter. Operating at optimal conditions in the MR enhance around 201 ton/day and 31% in the DME production and selectivity, respectively, rather than the conventional reactor. Moreover, curbing CO2 emission nearby 122 ton/day leads to consider the MR as an environmentally friendly reactor.

中文翻译:

用于直接 DME 合成的高效原位水吸附:稳健的计算建模和多目标优化

摘要 本研究研究了新型集成多功能反应器 (MR) 中原位除水的概念,旨在通过直接法合成提高二甲醚 (DME) 产量。在具有合成气进料流的移动床反应器中引入连续再生 4 A 沸石吸附剂被认为是对传统固定吸附增强反应器的显着改进。在没有水吸附的情况下,验证结果表明,所提供的配备 Unilan 等温线的综合一维异质模型与工业数据具有极好的一致性。此外,模拟结果表明,与非吸附剂配置相比,通过在 MR 中有效去除水,DME 生产速率和选择性提高了约 35% 和 25%。在 MR 中享受原位除水,显着提高了合成气转化率和甲醇产量。以最大化二甲醚产率和选择性为目的,多目标优化MR招募强大的NSGA-II算法。在三种截然不同的决策方法中,香农熵根据偏差指标参数呈现出更好的结果。与传统反应器相比,在 MR 中在最佳条件下运行分别提高了约 201 吨/天和 31% 的 DME 产量和选择性。此外,在 122 吨/天附近控制 CO2 排放导致将 MR 视为一种环境友好型反应堆。以最大化二甲醚产率和选择性为目的,多目标优化MR招募强大的NSGA-II算法。在三种截然不同的决策方法中,香农熵根据偏差指标参数呈现出更好的结果。与传统反应器相比,在 MR 中在最佳条件下运行分别提高了约 201 吨/天和 31% 的 DME 产量和选择性。此外,在 122 吨/天附近控制 CO2 排放导致将 MR 视为一种环境友好型反应堆。以最大化二甲醚产率和选择性为目的,多目标优化MR招募强大的NSGA-II算法。在三种截然不同的决策方法中,香农熵根据偏差指标参数呈现出更好的结果。与传统反应器相比,在 MR 中在最佳条件下运行分别提高了约 201 吨/天和 31% 的 DME 产量和选择性。此外,在 122 吨/天附近控制 CO2 排放导致将 MR 视为一种环境友好型反应堆。与传统反应器相比,在 MR 中在最佳条件下运行分别提高了约 201 吨/天和 31% 的 DME 产量和选择性。此外,在 122 吨/天附近控制 CO2 排放导致将 MR 视为一种环境友好型反应堆。与传统反应器相比,在 MR 中在最佳条件下运行分别提高了约 201 吨/天和 31% 的 DME 产量和选择性。此外,在 122 吨/天附近控制 CO2 排放导致将 MR 视为一种环境友好型反应堆。
更新日期:2020-11-01
down
wechat
bug