当前位置: X-MOL 学术Simul. Model. Pract. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Closed-loop platoon simulation with cooperative intelligent transportation systems based on vehicle-to-X communication
Simulation Modelling Practice and Theory ( IF 3.5 ) Pub Date : 2020-09-05 , DOI: 10.1016/j.simpat.2020.102173
Max-Arno Meyer , Christian Granrath , Günter Feyerl , Johannes Richenhagen , Jakob Kaths , Jakob Andert

The continuous enhancement of X-in-the-Loop (XiL) simulation methods is one key to efficiently test advanced vehicle control functions and ensure high software quality under a rising cost and time pressure. Systems, which control vehicles based on sensor perception can already be evaluated in XiL simulations. However, future vehicles will not exclusively represent stand-alone systems anymore, but involve Cooperative Intelligent Transport Systems (C-ITS), distributed among different traffic participants. While several simulation environments for C-ITS feasibility studies are available, common virtual test frameworks cannot incorporate multiple interacting and communicating road users with the required fidelity to secure C-ITS software, e.g. for platooning applications.

Within the scope of this publication, a method for virtual testing and calibration of in-vehicle C-ITS using a high fidelity vehicle platoon model is presented. Multiple closed-loop controlled vehicles and the mutual interferences between them are simulated in a common 3D environment alongside other traffic. Each high fidelity vehicle model individually simulates the longitudinal and lateral response, the generation of sensor data plus the exchange of vehicle-to-vehicle data. As a proof of concept, a model-in-the-loop simulation for a Cooperative Adaptive Cruise Control (CACC) was conducted. The simulation environment included five high fidelity vehicle models forming a platoon, coupled with CACC controller models under test.

The results reveal that the developed simulation environment captures the interaction within collaborative vehicle groups while modeling individual vehicles as controlled systems in the same tool. At the same time the method satisfies all requirements for XiL testing. Functional tests of multiple interacting vehicle controllers have been successfully carried out. In the performed feasibility study simulation-based tests uncovered an insufficient control stability of the CACC. Upcoming series developments and homologations of in-vehicle C-ITS software and hardware can be supported by the new virtual test environment to overcome connectivity, reproducibility and cost efficiency limitations of physical test environments. Next steps include proving the method in use for series development and extending it to cover vehicle-to-infrastructure use cases.



中文翻译:

基于车对X通讯的协同智能交通系统闭环排仿真

环内仿真(XiL)仿真方法的不断增强是有效测试先进的车辆控制功能并在不断增加的成本和时间压力下确保高质量软件的关键。基于传感器感知控制车辆的系统已经可以在XiL仿真中进行评估。但是,未来的车辆将不再仅代表独立系统,而是涉及分布在不同交通参与者之间的协作智能运输系统(C-ITS)。尽管可以使用几种用于C-ITS可行性研究的仿真环境,但通用的虚拟测试框架无法将具有保真度所需的保真度的多个交互和交流道路用户并入以保护C-ITS软件(例如用于排班应用程序)。

在本出版物的范围内,提出了一种使用高保真车辆排模型对车载C-ITS进行虚拟测试和校准的方法。在公共3D环境中与其他交通一起模拟了多台闭环控制车辆及其之间的相互干扰。每个高保真度的车辆模型分别模拟纵向和横向响应,传感器数据的生成以及车对车数据的交换。作为概念证明,对协作自适应巡航控制系统(CACC)进行了在环模型仿真。仿真环境包括五个排成一列的高保真汽车模型,以及正在测试的CACC控制器模型。

结果表明,在将单个车辆建模为同一工具中的受控系统时,开发的仿真环境捕获了协作车辆组内的交互。同时,该方法满足XiL测试的所有要求。已成功进行了多个交互车辆控制器的功能测试。在进行的可行性研究中,基于仿真的测试发现CACC的控制稳定性不足。新的虚拟测试环境可以支持即将推出的车载C-ITS软件和硬件的系列开发和认证,从而克服物理测试环境的连接性,可重复性和成本效率方面的局限性。后续步骤包括证明用于批量开发的方法,并将其扩展到涵盖车辆到基础设施的用例。

更新日期:2020-09-05
down
wechat
bug