当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Techno-economic parametric analysis of large diameter shallow ground heat exchanger in California climates
Energy and Buildings ( IF 6.6 ) Pub Date : 2020-09-06 , DOI: 10.1016/j.enbuild.2020.110444
Antash Najib , Angelo Zarrella , Vinod Narayanan , Richard Bourne , Curtis Harrington

A parametric study of a large diameter, shallow bore ground heat exchanger system coupled to a water-to-air heat pump is presented. The performance of this system is compared to an equivalent air-to-air heat pump system. Building loads from a single-family home in two different climate zones with different magnitudes and ratio of winter and heating loads are used in this study. In the first climate zone (Sacramento, CA), the winter load is two times the summer load while in the second climate zone (Riverside, CA), the winter and heating loads are nearly balanced.

A validated capacitance–resistance numerical model (CaRM-HP) is used to model the heat transfer from the ground heat exchanger. System performance and installation costs are evaluated for varied parameters including borehole diameter of the helical coil, depth of helical coil, spacing, and configuration of the bore field.

For all configurations considered, the ground-source heat pump system consumes less electricity annually than the air-source case. The GHE with 40.6 cm (16 in.) helix diameter, 6.09 m (20 ft) helix depth borehole, 1.27 cm (½ in.) nominal tubing diameter with bore backfilled with sand results in the lowest installed cost relative to saved energy for the analysed climate zones. For Sacramento, this configuration results in an installed cost $4.48/kWh saved per year and saved 28.3% of the electricity relative to the air-source system. For Riverside, this GHE design leads to an installed cost of $4.74/kWh saved per year and saved 28.5% of the electricity consumed by the air-source system. The installed cost of the He-GHE is compared against that of a photovoltaic array with and without battery storage on a time-dependent valuation energy basis.



中文翻译:

加利福尼亚气候下大直径浅层地面换热器的技术经济参数分析

提出了与水-空气热泵耦合的大直径,浅孔地面换热器系统的参数研究。将该系统的性能与等效的空对空热泵系统进行了比较。本研究使用来自两个不同气候区域中单户住宅的建筑负荷,它们具有不同的大小和比例的冬季和热负荷。在第一个气候区(加利福尼亚州萨克拉曼多),冬季负荷是夏季负荷的两倍,而在第二个气候区(加利福尼亚州里弗赛德),冬季负荷和供热负荷几乎达到平衡。

经过验证的电容电阻数值模型(CaRM-HP)用于对来自地面热交换器的热传递进行建模。针对各种参数(包括螺旋线圈的钻孔直径,螺旋线圈的深度,间距和钻孔场的配置)评估系统性能和安装成本。

对于所有考虑的配置,地源热泵系统每年消耗的电能比气源情况少。GHE的螺旋直径为40.6厘米(16英寸),钻孔深度为6.09 m(20英尺),公称管道直径为1.27厘米(1/2英寸),钻孔回填了沙子,相对于节省的能源,安装成本最低分析气候带。对于萨克拉曼多,这种配置每年可节省4.48美元/千瓦时的安装成本,相对于空气源系统,可节省28.3%的电力。对于Riverside,这种GHE设计导致每年节省的安装成本为$ 4.74 / kWh,并节省了空气源系统消耗的电力的28.5%。将He-GHE的安装成本与带有和不带有电池存储的光伏阵列的安装成本进行了比较(基于时间的评估能量)。

更新日期:2020-09-15
down
wechat
bug