当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photothermal-structural-fluid behaviors of PV-ETFE cushion roof in summer: Numerical analysis using three-dimensional multiphysics model
Energy and Buildings ( IF 6.6 ) Pub Date : 2020-09-05 , DOI: 10.1016/j.enbuild.2020.110448
Yue Yin , Wujun Chen , Jianhui Hu , Bing Zhao , Xiaofei Huang

PV-ETFE cushion roof combines transparent ETFE films and flexible photovoltaics, making it possible to harvest both electricity and heat from solar energy simultaneously. However, high temperature caused by solar radiation remarkably affects the mechanical behaviors of ETFE foils and converting efficiency of PV due to their thermal sensitivity. To tackle this issue, it is critical to understand the photothermal-structural-fluid performance of PV-ETFE cushion. Due to the difficulty to measure by experiment, this paper presents a three-dimensional mathematical model considering heat-structure-fluid couplings to conduct numerical analysis. Time-dependent analysis and dynamic boundary conditions are applied to study the behaviors which are difficult to observe in experiment. Results explain how photothermal-structural-fluid properties vary in a typical summer day from 9:00 to 17:00. Incident solar radiation and PV modules are two main factors that affect the temperature distribution of the cushion roof and the circulation of internal air. Eight groups of air circulation are found inside cushion chambers during simulating period. Air pressure is mainly determined by average temperature rather than local air flow and uneven heat distribution. It is also found that the worst structural case occurs on the upper layer at noon in terms of structural safety factor. Structural safety of PV-ETFE cushion roof in typical summer days can be guaranteed. These results can be applied further to improve and optimize the design of PV-ETFE cushion roof.



中文翻译:

夏季PV-ETFE垫层屋顶的光热-结构-流体行为:使用三维多物理场模型的数值分析

PV-ETFE缓冲屋顶将透明的ETFE薄膜和柔性光伏材料结合在一起,从而可以同时收集太阳能中的电能和热量。然而,由太阳辐射引起的高温由于其热敏感性而显着影响ETFE箔的机械性能和PV的转换效率。为了解决这个问题,了解PV-ETFE缓冲垫的光热结构流体性能至关重要。由于实验测量的困难,本文提出了一种考虑热-结构-流体耦合的三维数学模型,进行了数值分析。利用时变分析和动态边界条件研究了在实验中难以观察到的行为。结果说明了在典型的夏季从9:00到17:00的光热-结构-流体特性如何变化。入射太阳辐射和光伏组件是影响坐垫顶板温度分布和内部空气循环的两个主要因素。在模拟期间,在气垫室内发现八组空气循环。气压主要由平均温度决定,而不是由局部气流和不均匀的热量分布决定。还发现,就结构安全系数而言,最坏的结构情况发生在中午的上层。在典型的夏季,可以保证PV-ETFE气垫屋顶的结构安全。这些结果可进一步用于改进和优化PV-ETFE气垫屋顶的设计。入射太阳辐射和光伏组件是影响坐垫顶板温度分布和内部空气循环的两个主要因素。在模拟期间,在气垫室内发现八组空气循环。气压主要由平均温度决定,而不是由局部气流和不均匀的热量分布决定。还发现,就结构安全系数而言,最坏的结构情况发生在中午的上层。在典型的夏季,可以保证PV-ETFE气垫屋顶的结构安全。这些结果可进一步用于改进和优化PV-ETFE气垫屋顶的设计。入射太阳辐射和光伏组件是影响坐垫顶板温度分布和内部空气循环的两个主要因素。在模拟期间,在气垫室内发现八组空气循环。气压主要由平均温度决定,而不是由局部气流和不均匀的热量分布决定。还发现,就结构安全系数而言,最坏的结构情况发生在中午的上层。在典型的夏季,可以保证PV-ETFE气垫屋顶的结构安全。这些结果可进一步用于改进和优化PV-ETFE气垫屋顶的设计。在模拟期间,在气垫室内发现八组空气循环。气压主要由平均温度决定,而不是由局部气流和不均匀的热量分布决定。还发现,就结构安全系数而言,最坏的结构情况发生在中午的上层。在典型的夏季,可以保证PV-ETFE气垫屋顶的结构安全。这些结果可进一步用于改进和优化PV-ETFE气垫屋顶的设计。在模拟期间,在气垫室内发现八组空气循环。气压主要由平均温度决定,而不是由局部气流和不均匀的热量分布决定。还发现,就结构安全系数而言,最坏的结构情况发生在中午的上层。在典型的夏季,可以保证PV-ETFE气垫屋顶的结构安全。这些结果可进一步用于改进和优化PV-ETFE气垫屋顶的设计。

更新日期:2020-09-13
down
wechat
bug