当前位置: X-MOL 学术Build. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel fluid diode plate for use within ventilation system based on Tesla structure
Building and Environment ( IF 7.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.buildenv.2020.107257
Zhixiang Cao , Tongtong Zhao , Yi Wang , Hongyu Wang , Chao Zhai , Wenchao Lv

Abstract For building ventilation, it is often necessary to create airflow in a particular direction and prevent the backflow of pollutants and unnecessary expenditure of energy. At present, most check devices can only be used in small areas, such as pipelines, which cannot fully meet the needs of building ventilation systems. Based on the principle of a Tesla structure, this paper proposes a new type of fluid diode plate (FDP) without moving parts, which can be infinitely extended in terms of area and is suitable for various ventilation environments. A series of experiments and numerical simulations were performed to test the check effect of this FDP under different influencing factors. Two evaluation indices, the pressure loss ratio (FFDP) and minor loss coefficient (ζ), were used to evaluate the flow pressure losses in both forward and reverse directions for the FDP. The results showed that the flow pressure loss in both directions for the FDP were very different. For the fluid diode plate with 4 flow loops, the pressure loss of reverse flow could be more than 6 times that of a forward flow. The pressure loss of a forward flow showed a little increase compared with an orifice plate with the same porosity. Moreover, the check effect of the FDP increased with the inflow velocity and reached a stable value when the flow in the FDP channel became fully turbulent. In future research, the check effect of the FDP will be further improved by further optimizing the structure.

中文翻译:

用于基于特斯拉结构的通风系统中的新型流体二极管板

摘要 对于建筑通风,往​​往需要产生特定方向的气流,防止污染物倒流和不必要的能源消耗。目前,大多数检查装置只能用于管道等小范围内,不能完全满足建筑通风系统的需要。本文基于特斯拉结构的原理,提出了一种新型的无运动部件的流体二极管板(FDP),其面积可无限扩展,适用于各种通风环境。进行了一系列实验和数值模拟,以测试该FDP在不同影响因素下的校验效果。两个评价指标,压力损失比(FFDP)和次损失系数(ζ),用于评估 FDP 正向和反向流动压力损失。结果表明,FDP 在两个方向上的流动压力损失非常不同。对于具有 4 个流动回路的流体二极管板,反向流动的压力损失可能是正向流动的 6 倍以上。与具有相同孔隙率的孔板相比,向前流动的压力损失略有增加。此外,FDP 的止回效果随着流入速度的增加而增加,并在 FDP 通道中的流动变得完全湍流时达到稳定值。在未来的研究中,将通过进一步优化结构来进一步提高FDP的抑制效果。对于具有 4 个流动回路的流体二极管板,反向流动的压力损失可能是正向流动的 6 倍以上。与具有相同孔隙率的孔板相比,向前流动的压力损失略有增加。此外,FDP 的止回效果随着流入速度的增加而增加,并在 FDP 通道中的流动变得完全湍流时达到稳定值。在未来的研究中,将通过进一步优化结构来进一步提高FDP的抑制效果。对于具有 4 个流动回路的流体二极管板,反向流动的压力损失可能是正向流动的 6 倍以上。与具有相同孔隙率的孔板相比,向前流动的压力损失略有增加。此外,FDP 的止回效果随着流入速度的增加而增加,并在 FDP 通道中的流动变得完全湍流时达到稳定值。在未来的研究中,将通过进一步优化结构来进一步提高FDP的抑制效果。FDP 的止回效果随着流入速度的增加而增加,并在 FDP 通道中的流动变得完全湍流时达到稳定值。在未来的研究中,将通过进一步优化结构来进一步提高FDP的抑制效果。FDP 的止回效果随着流入速度的增加而增加,并在 FDP 通道中的流动变得完全湍流时达到稳定值。在未来的研究中,将通过进一步优化结构来进一步提高FDP的抑制效果。
更新日期:2020-11-01
down
wechat
bug