当前位置: X-MOL 学术Appl. Math. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic induction can control the effect of external electrical stimuli on the spiral wave
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.amc.2020.125608
Karthikeyan Rajagopal , Iqtadar Hussain , Zahra Rostami , Chunbiao Li , Viet-Thanh Pham , Sajad Jafari

Abstract The combination of chemical, physical, electrical, and structural properties of the neurons has made them highly complex dynamical units. One of the best tools to deal with such high-level complexity is to study the neural spatiotemporal patterns. In this work, we have focused specifically on the spiral spatiotemporal pattern. Spirals make an important contribution to some of the cortical activities. However, they also may misregulate the neural activities and lead to neurological disorders such as epilepsy or attention deficit hyperactivity disorder. Here, we have studied the effect of amplitude and frequency of an external force on the dynamics of the spiral wave in one- and two-layer neural network. We have also examined the role of synaptic connections between the neurons. For each examination, three modes of zero-, low-, and high-frequency external magnetic induction are considered. In the one-layer neural network with low frequency magnetic excitation, the frequency of the stimuli overtakes the stimuli amplitude and significantly changes the dynamics of the spirals. Nonetheless, in the case of high-frequency magnetic induction, neither the amplitude nor the frequency of the electrical force have control over the existing spirals. We also have shown how the timely pattern of neural synchronization changes when the neurons are allowed to more communicate with one another. In the two-layer neural network, on the other hand, we have shown that both the amplitude and frequency of the electrical stimuli can help to control or even eliminate the spiral waves.

中文翻译:

磁感应可以控制外部电刺激对螺旋波的影响

摘要 神经元的化学、物理、电学和结构特性的结合使它们成为高度复杂的动力单元。处理这种高级复杂性的最佳工具之一是研究神经时空模式。在这项工作中,我们特别关注螺旋时空模式。螺旋对某些皮质活动有重要贡献。然而,它们也可能使神经活动失调并导致神经系统疾病,如癫痫或注意力缺陷多动障碍。在这里,我们研究了外力的幅度和频率对一层和两层神经网络中螺旋波动力学的影响。我们还研究了神经元之间突触连接的作用。每次检查,零、低、并考虑了高频外磁感应。在低频磁激励的一层神经网络中,刺激的频率超过了刺激的幅度,显着改变了螺旋的动力学。尽管如此,在高频磁感应的情况下,电力的振幅和频率都无法控制现有的螺旋。我们还展示了当神经元被允许更多地相互交流时,神经同步的及时模式是如何变化的。另一方面,在两层神经网络中,我们已经证明电刺激的幅度和频率都可以帮助控制甚至消除螺旋波。在低频磁激励的一层神经网络中,刺激的频率超过了刺激的幅度,显着改变了螺旋的动力学。尽管如此,在高频磁感应的情况下,电力的振幅和频率都无法控制现有的螺旋。我们还展示了当神经元被允许更多地相互交流时,神经同步的及时模式是如何变化的。另一方面,在两层神经网络中,我们已经证明电刺激的幅度和频率都可以帮助控制甚至消除螺旋波。在低频磁激励的一层神经网络中,刺激的频率超过了刺激的幅度,显着改变了螺旋的动力学。尽管如此,在高频磁感应的情况下,电力的振幅和频率都无法控制现有的螺旋。我们还展示了当神经元被允许更多地相互交流时,神经同步的及时模式是如何变化的。另一方面,在两层神经网络中,我们已经证明电刺激的幅度和频率都可以帮助控制甚至消除螺旋波。在高频磁感应的情况下,电力的振幅和频率都无法控制现有的螺旋。我们还展示了当神经元被允许更多地相互交流时,神经同步的及时模式是如何变化的。另一方面,在两层神经网络中,我们已经证明电刺激的幅度和频率都可以帮助控制甚至消除螺旋波。在高频磁感应的情况下,电力的振幅和频率都无法控制现有的螺旋。我们还展示了当神经元被允许更多地相互交流时,神经同步的及时模式是如何变化的。另一方面,在两层神经网络中,我们已经证明电刺激的幅度和频率都可以帮助控制甚至消除螺旋波。
更新日期:2021-02-01
down
wechat
bug