当前位置: X-MOL 学术Mater. Res. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy-absorbing wood composite for improved damage tolerance inspired by mollusc shells
Materials Research Express ( IF 2.3 ) Pub Date : 2020-09-04 , DOI: 10.1088/2053-1591/abb1f3
Maximilian Pramreiter 1 , Martin Rohner 1 , Cedou Kumpenza 1 , Bernhard Ungerer 1 , Alexander Stadlmann 1 , Jozef Keckes 2 , Ulrich Mller 1
Affiliation  

The crossed lamellar structure (CLS) found in mollusc shells is an excellent example for nature’s ability to form complex hierarchical microstructures with a remarkable balance between strength and toughness. The CLS has become the subject of numerous studies focusing on the replication of the unique microstructure using synthetic composites. The present study proposes a wood composite replicating the CLS’ middle layer microstructure and investigates the mechanical properties using three-point bending tests. The morphology of the failure mechanisms is recorded using digital microscopy and the experimental data are compared to those from ply- and solid woods. The results show a successful replication of the dominating failure mechanisms of crack deflection and crack bridging. While strength decreased significantly by ∼60%, toughness increased remarkable by ∼70% compared to plywood and was in the range of solid wood. The small data scattering from the wooden CLS samples compared to solid wood further hints on a stable failure mechanism and uniform energy-absorption. The results document that wood can be used to design an energy-absorbing composite based on the CLS-inspired ductile microstructure.



中文翻译:

受软体动物贝壳启发的吸能木复合材料可提高损伤容限

在软体动物壳中发现的交叉层状结构 (CLS) 是大自然形成复杂分层微观结构的能力的一个很好的例子,在强度和韧性之间取得了显着的平衡。CLS 已成为众多研究的主题,重点是使用合成复合材料复制独特的微观结构。本研究提出了一种复制 CLS 中间层微观结构的木材复合材料,并使用三点弯曲试验研究了机械性能。使用数字显微镜记录失效机制的形态,并将实验数据与胶合木和实木的数据进行比较。结果显示成功复制了裂纹偏转和裂纹桥接的主要失效机制。虽然强度显着下降了约 60%,与胶合板相比,韧性显着增加了约 70%,处于实木范围内。与实木相比,来自木质 CLS 样品的小数据散射进一步暗示了稳定的失效机制和均匀的能量吸收。结果表明,木材可用于设计基于 CLS 启发的延性微结构的吸能复合材料。

更新日期:2020-09-04
down
wechat
bug