当前位置: X-MOL 学术J. Wood Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of assemble patterns on bonding strength of glued bamboo
Journal of Wood Science ( IF 2.2 ) Pub Date : 2020-09-03 , DOI: 10.1186/s10086-020-01907-x
Yu Zheng , Bao-long Yi , Ya-qi Tong , Zhen-zhen Peng

As a kind of natural composite material, the outer side of bamboo was quite different from its inner side in microscopic structure and mechanical properties. In order to research the effect of these differences on bonding strength of glued bamboo, bamboo strips were bonded by three different forms: outer side to outer side, outer side to inner side and inner side to inner side. Shear strength results indicated that the bamboo sample glued by inner side to inner side has the greatest shear strength value, which is 18.35 MPa, and the other two types have similar shear strength values (approximately 14 MPa). In particular, for the sample glued by outer side to inner side, the broken part is always the outer side. The scanning electron microscope (SEM) images indicated that bamboo fiber cells and parenchyma cells have different failure patterns in compression shear test. For bamboo fiber cells, dominant destruction occurred at the interface between the fibers. And for parenchyma cell, fracture occurred on cell wall and broken the parenchyma cell itself. The interface between bamboo fiber cells was very weak, thus parenchyma cell was the major contributor to shear strength of bamboo. The inner side had higher shear strength because it had higher content of parenchyma cells. The SEM image and shear strength curve also indicated that in the early period of shearing process, the deformed parenchyma cells are in a relax status, and until the later period of shearing process, the parenchyma cells begin to contribute to shear strength.

中文翻译:

组装方式对胶竹粘结强度的影响

作为一种天然复合材料,竹子的外侧在微观结构和力学性能上与内侧完全不同。为了研究这些差异对胶合竹的粘合强度的影响,竹条通过三种不同的形式粘合:外侧到外侧,外侧到内侧和内侧到内侧。剪切强度结果表明,从内侧到内侧粘合的竹样品具有最大的剪切强度值,即18.35 MPa,而其他两种类型的剪切强度值相近(约14 MPa)。特别地,对于通过外侧粘合到内侧的样品,断裂部分总是外侧。扫描电镜(SEM)图像表明,竹纤维细胞和薄壁细胞在压缩剪切试验中具有不同的破坏模式。对于竹纤维细胞,主要破坏发生在纤维之间的界面。对于实质细胞,破裂发生在细胞壁上并破坏实质细胞本身。竹纤维细胞之间的界面非常弱,因此薄壁组织细胞是剪切强度的主要贡献者。内侧具有较高的剪切强度,因为其具有较高的实质细胞含量。SEM图像和剪切强度曲线还表明,在剪切过程的早期,变形的薄壁细胞处于松弛状态,直到剪切过程的后期,薄壁细胞开始对剪切强度起贡献。对于竹纤维细胞,主要破坏发生在纤维之间的界面。对于实质细胞,破裂发生在细胞壁上并破坏实质细胞本身。竹纤维细胞之间的界面非常弱,因此薄壁组织细胞是剪切强度的主要贡献者。内侧具有较高的剪切强度,因为其具有较高的实质细胞含量。SEM图像和剪切强度曲线还表明,在剪切过程的早期,变形的薄壁细胞处于松弛状态,直到剪切过程的后期,薄壁细胞开始对剪切强度起贡献。对于竹纤维细胞,主要破坏发生在纤维之间的界面。对于实质细胞,破裂发生在细胞壁上并破坏实质细胞本身。竹纤维细胞之间的界面非常弱,因此薄壁组织细胞是剪切强度的主要贡献者。内侧具有较高的剪切强度,因为其具有较高的实质细胞含量。SEM图像和剪切强度曲线还表明,在剪切过程的早期,变形的薄壁细胞处于松弛状态,直到剪切过程的后期,薄壁细胞开始对剪切强度起贡献。竹纤维细胞之间的界面非常弱,因此薄壁组织细胞是剪切强度的主要贡献者。内侧具有较高的剪切强度,因为其具有较高的实质细胞含量。SEM图像和剪切强度曲线还表明,在剪切过程的早期,变形的薄壁细胞处于松弛状态,直到剪切过程的后期,薄壁细胞开始对剪切强度起贡献。竹纤维细胞之间的界面非常弱,因此薄壁组织细胞是剪切强度的主要贡献者。内侧具有较高的剪切强度,因为其具有较高的实质细胞含量。SEM图像和剪切强度曲线还表明,在剪切过程的早期,变形的薄壁细胞处于松弛状态,直到剪切过程的后期,薄壁细胞开始对剪切强度起贡献。
更新日期:2020-09-05
down
wechat
bug