当前位置: X-MOL 学术IEEE Trans. Terahertz Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Terahertz spectroscope using CMOS camera and dispersive optics
IEEE Transactions on Terahertz Science and Technology ( IF 3.2 ) Pub Date : 2020-09-01 , DOI: 10.1109/tthz.2020.3004516
Daniel Headland , Robin Zatta , Philipp Hillger , Ullrich R. Pfeiffer

There is a need to reduce the cost and size of functional terahertz devices, in order to expedite this notoriously underutilized frequency band toward practical applications. Electronic integrated circuits (ICs) are extremely useful to this end, as they provide a means to achieve miniaturization and mass production, leveraging the foundries and techniques that have made digital electronics ubiquitous. Although integration of terahertz systems is expected to diminish performance and functionality, the increased number and availability of devices is likely to compensate for such disadvantages. In this work, we develop a terahertz-range spectroscope that combines a CMOS terahertz camera with custom-machined reflective optics. It is noted that the individual pixels of the camera employ incoherent detection, and hence a single pixel is not able to differentiate distinct frequencies. For this reason, the reflective optics are designed to split a terahertz beam into its constituent frequencies, and target each to a different position on the terahertz camera’s focal plane array. The required frequency-scanning functionality is provided by a corrugated reflective optic that operates in a manner similar to a curved diffraction grating. The developed spectroscope is experimentally validated, and its functionality agrees closely with simulation. This work provides a pathway to a new generation of compact, low-cost, all-electronic terahertz spectrometers that employ mass-producible silicon ICs for all active components.

中文翻译:

使用 CMOS 相机和色散光学器件的太赫兹光谱仪

有必要降低功能性太赫兹设备的成本和尺寸,以便将这个众所周知的未充分利用的频段加速到实际应用中。为此,电子集成电路 (IC) 非常有用,因为它们提供了一种实现小型化和大规模生产的方法,利用使数字电子产品无处不在的代工厂和技术。尽管预计太赫兹系统的集成会降低性能和功能,但设备数量和可用性的增加可能会弥补这些缺点。在这项工作中,我们开发了一种太赫兹范围的光谱仪,它将 CMOS 太赫兹相机与定制加工的反射光学器件相结合。需要注意的是,相机的单个像素采用非相干检测,因此单个像素无法区分不同的频率。出于这个原因,反射光学设计用于将太赫兹光束分成其组成频率,并将每个频率瞄准太赫兹相机焦平面阵列上的不同位置。所需的频率扫描功能由波纹状反射光学器件提供,其工作方式类似于弯曲衍射光栅。开发的光谱仪经过实验验证,其功能与模拟非常吻合。这项工作为新一代紧凑、低成本、全电子太赫兹光谱仪提供了一条途径,该光谱仪的所有有源元件均采用可大规模生产的硅 IC。并将每个目标定位到太赫兹相机焦平面阵列上的不同位置。所需的频率扫描功能由波纹状反射光学器件提供,其工作方式类似于弯曲衍射光栅。开发的光谱仪经过实验验证,其功能与模拟非常吻合。这项工作为新一代紧凑、低成本、全电子太赫兹光谱仪提供了一条途径,该光谱仪的所有有源元件均采用可大规模生产的硅 IC。并将每个目标定位到太赫兹相机焦平面阵列上的不同位置。所需的频率扫描功能由波纹状反射光学器件提供,其工作方式类似于弯曲衍射光栅。开发的光谱仪经过实验验证,其功能与模拟非常吻合。这项工作为新一代紧凑、低成本、全电子太赫兹光谱仪提供了一条途径,该光谱仪的所有有源元件均采用可大规模生产的硅 IC。并且其功能与模拟非常吻合。这项工作为新一代紧凑、低成本、全电子太赫兹光谱仪提供了一条途径,该光谱仪的所有有源元件均采用可大规模生产的硅 IC。并且它的功能与模拟非常吻合。这项工作为新一代紧凑、低成本、全电子太赫兹光谱仪提供了一条途径,该光谱仪的所有有源元件均采用可大规模生产的硅 IC。
更新日期:2020-09-01
down
wechat
bug