当前位置: X-MOL 学术J. Vib. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermoelastic fractional derivative model for exciting viscoelastic microbeam resting on Winkler foundation
Journal of Vibration and Control ( IF 2.3 ) Pub Date : 2020-09-04 , DOI: 10.1177/1077546320956528
Ahmed E Abouelregal 1, 2
Affiliation  

In the current investigation, the thermoelastic vibration of a viscoelastic microbeam resting on the Winkler foundation is studied using the fractional-order theory. To describe the damping of the viscoelastic material according to experimental results, the Kelvin–Voigt model is replaced by a new form with a fractional-order derivative. The generalized thermoelasticity model and Euler–Bernoulli beam theory are used to construct the governing equation. The microbeam is subjected to axial load, ultrafast laser heating, and varying sinusoidal heat. The governing equation is then solved using the Laplace transform technique to determine the deflection and thermoelastic interaction responses of microbeams. The effects of many parameters such as the coefficient of viscosity, axial load, fractional derivative order, laser pulse duration, and foundation parameter on the microbeam response are explained and discussed in detail.



中文翻译:

Winkler地基上激发粘弹性微梁的热弹性分数导数模型

在当前的研究中,使用分数阶理论研究了位于Winkler基础上的粘弹性微束的热弹性振动。为了根据实验结果描述粘弹性材料的阻尼,用分数阶导数的新形式代替了Kelvin-Voigt模型。广义热弹性模型和欧拉-伯努利梁理论被用来构造控制方程。微束承受轴向载荷,超快激光加热和变化的正弦波热量。然后使用拉普拉斯变换技术求解控制方程,以确定微束的挠度和热弹性相互作用响应。许多参数的影响,例如粘度系数,轴向载荷,分数导数阶数,激光脉冲持续时间,

更新日期:2020-09-05
down
wechat
bug