当前位置: X-MOL 学术Glycobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel serine/threonine-O-glycosylation with N-acetylneuraminic acid and 3-deoxy-D-manno-octulosonic acid by bacterial flagellin glycosyltransferases
Glycobiology ( IF 4.3 ) Pub Date : 2020-09-03 , DOI: 10.1093/glycob/cwaa084
Aasawari Khairnar 1 , Sonali Sunsunwal 1 , Ponnusamy Babu 2 , T N C Ramya 1
Affiliation  

Some bacterial flagellins are O-glycosylated on surface-exposed serine/threonine residues with nonulosonic acids such as pseudaminic acid, legionaminic acid and their derivatives by flagellin nonulosonic acid glycosyltransferases, also called motility-associated factors (Maf). We report here two new glycosidic linkages previously unknown in any organism, serine/threonine-O-linked N-acetylneuraminic acid (Ser/Thr-O-Neu5Ac) and serine/threonine-O-linked 3-deoxy-D-manno-octulosonic acid or keto-deoxyoctulosonate (Ser/Thr-O-KDO), both catalyzed by Geobacillus kaustophilus Maf and Clostridium botulinum Maf. We identified these novel glycosidic linkages in recombinant G. kaustophilus and C. botulinum flagellins that were coexpressed with their cognate recombinant Maf protein in Escherichia coli strains producing the appropriate nucleotide sugar glycosyl donor. Our finding that both G. kaustophilus Maf (putative flagellin sialyltransferase) and C. botulinum Maf (putative flagellin legionaminic acid transferase) catalyzed Neu5Ac and KDO transfer on to flagellin indicates that Maf glycosyltransferases display donor substrate promiscuity. Maf glycosyltransferases have the potential to radically expand the scope of neoglycopeptide synthesis and posttranslational protein engineering.
更新日期:2020-09-03
down
wechat
bug