当前位置: X-MOL 学术Solid Earth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications
Solid Earth ( IF 3.4 ) Pub Date : 2020-09-04 , DOI: 10.5194/se-11-1731-2020
Romesh Palamakumbura , Maarten Krabbendam , Katie Whitbread , Christian Arnhardt

Understanding the impact of fracture networks on rock mass properties is an essential part of a wide range of applications in geosciences from understanding permeability of groundwater aquifers and hydrocarbon reservoirs to erodibility properties and slope stability of rock masses for geotechnical engineering. However, gathering high-quality, oriented-fracture datasets in the field can be difficult and time-consuming, for example, due to constraints on field work time or access (e.g. cliffs). Therefore, a method for obtaining accurate, quantitative fracture data from photographs is a significant benefit. In this paper we describe a method for generating a series of digital fracture traces in a geographic information system (GIS) environment, in which spatial analysis of a fracture network can be carried out. The method is not meant to replace the gathering of data in the field but to be used in conjunction with it, and it is well suited when field work time is limited or when the section cannot be accessed directly. The basis of the method is the generation of the vector dataset (shapefile) of a fracture network from a georeferenced photograph of an outcrop in a GIS environment. From that shapefile, key parameters such as fracture density and orientation can be calculated. Furthermore, in the GIS environment more complex spatial calculations and graphical plots can be carried out such as heat maps of fracture density. Advantages and limitations compared to other fracture network capture methods are discussed.

中文翻译:

通过数字化二维断裂网络和地理信息系统中的地形轮廓线进行数据采集:进一步的开发和应用

理解裂缝网络对岩体特性的影响是在地球科学中广泛应用的重要组成部分,从理解地下水层和烃储层的渗透性到岩土工程的岩土的可蚀性和边坡稳定性。但是,例如,由于对野外作业时间或出入通道(例如,悬崖)的限制,在野外收集高质量的定向断裂数据集可能既困难又耗时。因此,一种用于从照片中获得准确,定量的断裂数据的方法具有显着的优势。在本文中,我们描述了一种在地理信息系统(GIS)环境中生成一系列数字裂缝痕迹的方法,其中可以对裂缝网络进行空间分析。该方法并不是要替换现场的数据收集,而是要与之结合使用,当现场工作时间有限或无法直接访问该部分时,该方法非常适合。该方法的基础是根据GIS环境中露头的地理参考照片生成裂缝网络的矢量数据集(shapefile)。根据该shapefile,可以计算关键参数,例如裂缝密度和方向。此外,在GIS环境中,可以执行更复杂的空间计算和图形化绘制,例如裂缝密度的热图。讨论了与其他裂缝网络捕获方法相比的优缺点。当现场工作时间有限或无法直接访问该部分时,它非常适合。该方法的基础是根据GIS环境中露头的地理参考照片生成裂缝网络的矢量数据集(shapefile)。根据该shapefile,可以计算关键参数,例如裂缝密度和方向。此外,在GIS环境中,可以执行更复杂的空间计算和图形绘制,例如裂缝密度的热图。讨论了与其他裂缝网络捕获方法相比的优缺点。当现场工作时间有限或无法直接访问该部分时,它非常适合。该方法的基础是根据GIS环境中露头的地理参考照片生成裂缝网络的矢量数据集(shapefile)。根据该shapefile,可以计算关键参数,例如裂缝密度和方向。此外,在GIS环境中,可以执行更复杂的空间计算和图形绘制,例如裂缝密度的热图。讨论了与其他裂缝网络捕获方法相比的优缺点。可以计算关键参数,例如裂缝密度和方向。此外,在GIS环境中,可以执行更复杂的空间计算和图形化绘制,例如裂缝密度的热图。讨论了与其他裂缝网络捕获方法相比的优缺点。可以计算关键参数,例如裂缝密度和方向。此外,在GIS环境中,可以执行更复杂的空间计算和图形绘制,例如裂缝密度的热图。讨论了与其他裂缝网络捕获方法相比的优缺点。
更新日期:2020-09-05
down
wechat
bug