Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Swirling atomization characteristics of waste oil biodiesel
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects ( IF 2.3 ) Pub Date : 2020-09-04 , DOI: 10.1080/15567036.2020.1814454
Yishui Zhang 1 , Fashe Li 1, 2 , Shuang Wang 1 , Bican Wang 1 , Shang Jiang 1 , Meng Sui 1
Affiliation  

In this study, we investigate the macroscopic structure and atomization characteristics of biodiesel produced by sewage oil in swirl atomizing nozzle through numerical simulations and experiments. The simulation is based on Euler-Lagrange method to solve the coupled equations of discrete and continuous phases. This model can boost the practical application of biodiesel in industrial furnaces. The results reveal that when the fuel injection pressure is 0.5 MPa, the size of the atomized particles ranges between 87 and 158 μm, wherein the droplets of particle size less than 50 μm are concentrated in the center of the flow field, and large droplets with size of nearly 150 μm dominate the tail of the spray. This is because in the dense spray area near the nozzle outlet, the turbulent energy of air and droplets is maximum. Therefore, at the outlet of the nozzle, a violent momentum exchange occurs, and the droplet breaks up again, so the particle size of the droplet in the rear part of the dense zone (center of the flow field) decreases. Then, the atomization momentum gradually weakens along the axial direction, and some droplets aggregate in the tail of the dilute zone and in front of the extremely dilute zone, resulting in an increase in droplet size in the extremely dilute zone (tail of the flow field). As the injection pressure increases, Sauter mean diameter of particles fluctuates more drastically, and as time passes, the size of the droplets decreases stepwise and gradually stabilizes in the range of 25–75 μm, keeping the atomization effect in a stable state.



中文翻译:

废油生物柴油的旋流雾化特性

在这项研究中,我们通过数值模拟和实验研究了污水在旋流雾化喷嘴中产生的生物柴油的宏观结构和雾化特性。该仿真基于Euler-Lagrange方法来求解离散相和连续相的耦合方程。该模型可以促进生物柴油在工业炉中的实际应用。结果表明,当燃料喷射压力为0.5 MPa时,雾化颗粒的粒径在87至158μm之间,其中粒径小于50μm的液滴集中在流场的中心,较大的液滴具有接近150μm的颗粒占据了喷雾的尾部。这是因为在喷嘴出口附近的密集喷雾区域中,空气和液滴的湍流能量最大。因此,在喷嘴的出口处,发生剧烈的动量交换,并且液滴再次破碎,因此在致密区域的后部(流场的中心)中的液滴的粒径减小。然后,雾化动量沿轴向逐渐减弱,一些液滴聚集在稀薄区的尾部和极稀薄区的前面,导致极稀薄区的液滴尺寸增加(流场的尾部) )。随着注入压力的增加,索特粒子的平均直径波动更大,随着时间的流逝,液滴的大小逐步减小,并逐渐稳定在25–75μm的范围内,从而使雾化效果保持稳定。因此,在密集区后部(流场的中心)的液滴粒径减小。然后,雾化动量沿轴向逐渐减弱,一些液滴聚集在稀薄区的尾部和极稀薄区的前面,导致极稀薄区的液滴尺寸增加(流场的尾部) )。随着注射压力的增加,索特粒子的平均直径波动更大,随着时间的流逝,液滴的大小逐步减小,并逐渐稳定在25–75μm的范围内,从而使雾化效果保持稳定状态。因此,在密集区后部(流场的中心)的液滴粒径减小。然后,雾化动量沿轴向逐渐减弱,一些液滴聚集在稀薄区的尾部和极稀薄区的前面,导致极稀薄区的液滴尺寸增加(流场的尾部) )。随着注入压力的增加,索特粒子的平均直径波动更大,随着时间的流逝,液滴的大小逐步减小,并逐渐稳定在25–75μm的范围内,从而使雾化效果保持稳定。一些液滴聚集在稀薄区域的尾部和极稀薄区域的前面,从而导致极稀薄区域(流场的尾部)的液滴尺寸增加。随着注入压力的增加,索特粒子的平均直径波动更大,随着时间的流逝,液滴的大小逐步减小,并逐渐稳定在25–75μm的范围内,从而使雾化效果保持稳定。一些液滴聚集在稀薄区域的尾部和极稀薄区域的前面,从而导致极稀薄区域(流场的尾部)的液滴尺寸增加。随着注入压力的增加,索特粒子的平均直径波动更大,随着时间的流逝,液滴的大小逐步减小,并逐渐稳定在25–75μm的范围内,从而使雾化效果保持稳定。

更新日期:2020-09-05
down
wechat
bug