当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient and Stable Colloidal Quantum Dot Solar Cells with a Green‐Solvent Hole‐Transport Layer
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-09-03 , DOI: 10.1002/aenm.202002084
Hong Il Kim 1, 2 , Junwoo Lee 1 , Min‐Jae Choi 3 , Seung Un Ryu 1 , Kyoungwon Choi 1 , Seungjin Lee 2 , Sjoerd Hoogland 2 , F. Pelayo García Arquer 2 , Edward H. Sargent 2 , Taiho Park 1
Affiliation  

Next‐generation solution‐processed solar cells will hopefully be processed using green solvents, and will unite high performance with operating stability. Colloidal quantum dot/polymer hybrid solar cells are of interest for their harvest of the visible as well as the near infrared; however, today's best polymer hole‐transporting layers (HTLs) rely on processing using hazardous solvents such as chlorobenzene. This stems from the strong polymer–polymer attraction in polymeric p‐type materials, which accounts for their limited solubility. Here, a new random polymeric HTL (asy‐ranPBTBDT) is reported that is soluble in green solvents such as 2‐methylanisole without compromising ultimate device power conversion efficiency. The new polymer structure induces a strong π–π stacking face‐on orientation and less lateral grain growth compared to control asy‐PBTBDT, leading to reduced charge recombination and improved device stability. The resulting device exhibits a power conversion efficiency (PCE) of 13.2% and retains 89% of its initial efficiency after 120 h of continuous device operation at the maximum power point, compared to a PCE of 11.4% and 71% degradation for control devices.

中文翻译:

具有绿色溶剂空穴传输层的高效,稳定的胶体量子点太阳能电池

下一代解决方案处理的太阳能电池有望使用绿色溶剂进行处理,并将高性能与操作稳定性结合在一起。胶体量子点/聚合物混合太阳能电池因其可见光和近红外光的收获而备受关注。但是,当今最好的聚合物空穴传输层(HTL)依赖于使用危险溶剂(例如氯苯)的加工。这源于在聚合强聚合物-聚合物的吸引力p型材料,说明其有限的溶解度。在此,据报道,一种新的无规聚合HTL(asy-ranPBTBDT)可溶于绿色溶剂(如2-甲基苯甲醚),而不会影响最终的器件功率转换效率。与对照的asy-PBTBDT相比,这种新的聚合物结构具有更强的π-π堆垛面朝上取向和较小的横向晶粒生长,从而减少了电荷重组并改善了器件稳定性。最终的设备在最大功率点连续运行120小时后,其功率转换效率(PCE)为13.2%,并保持89%的初始效率,而控制设备的PCE为11.4%,降级为71%。
更新日期:2020-10-20
down
wechat
bug