当前位置: X-MOL 学术Geom. Dedicata. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Concordances to prime hyperbolic virtual knots
Geometriae Dedicata ( IF 0.5 ) Pub Date : 2020-09-04 , DOI: 10.1007/s10711-020-00563-1
Micah Chrisman

Let $\Sigma_0,\Sigma_1$ be closed oriented surfaces. Two oriented knots $K_0 \subset \Sigma_0 \times [0,1]$ and $K_1 \subset \Sigma_1 \times [0,1]$ are said to be (virtually) concordant if there is a compact oriented $3$-manifold $W$ and a smoothly and properly embedded annulus $A$ in $W \times [0,1]$ such that $\partial W=\Sigma_1 \sqcup -\Sigma_0$ and $\partial A=K_1 \sqcup -K_0$. This notion of concordance, due to Turaev, is equivalent to concordance of virtual knots, due to Kauffman. A prime virtual knot, in the sense of Matveev, is one for which no thickened surface representative $K \subset \Sigma \times [0,1]$ admits a nontrivial decomposition along a separating vertical annulus that intersects $K$ in two points. Here we prove that every knot $K \subset \Sigma \times [0,1]$ is concordant to a prime satellite knot and a prime hyperbolic knot. For homologically trivial knots in $\Sigma \times [0,1]$, we prove this can be done so that the Alexander polynomial is preserved. This generalizes the corresponding results for classical knot concordance, due to Bleiler, Kirby-Lickorish, Livingston, Myers, Nakanishi, and Soma. The new challenge for virtual knots lies in proving primeness. Contrary to the classical case, not every hyperbolic knot in $\Sigma \times [0,1]$ is prime and not every composite knot is a satellite. Our results are obtained using a generalization of tangles in $3$-balls we call complementary tangles. Properties of complementary tangles are studied in detail.

中文翻译:

素双曲虚拟结的索引

令 $\Sigma_0,\Sigma_1$ 为封闭定向曲面。两个定向结 $K_0 \subset \Sigma_0 \times [0,1]$ 和 $K_1 \subset \Sigma_1 \times [0,1]$ 被称为(实际上)一致,如果有一个紧凑的定向 $3$-流形$W$ 和 $W \times [0,1]$ 中平滑且正确嵌入的环 $A$ 使得 $\partial W=\Sigma_1 \sqcup -\Sigma_0$ 和 $\partial A=K_1 \sqcup -K_0 $. 由于 Turaev,这种一致性概念等同于 Kauffman 提出的虚拟结的一致性。在 Matveev 的意义上,一个主要的虚拟结是一个没有加厚表面代表 $K \subset \Sigma \times [0,1]$ 承认沿着与 $K$ 相交的两个点的分离垂直环的非平凡分解. 在这里,我们证明每个结 $K \subset \Sigma \times [0,1]$ 与素数卫星结和素双曲结是一致的。对于 $\Sigma \times [0,1]$ 中的同调平凡结,我们证明可以这样做,以便保留亚历山大多项式。由于 Bleiler、Kirby-Lickorish、Livingston、Myers、Nakanishi 和 Soma,这概括了经典结一致性的相应结果。虚拟结的新挑战在于证明素数。与经典情况相反,并非 $\Sigma \times [0,1]$ 中的每个双曲线结都是素数,也不是每个复合结都是卫星。我们的结果是使用 $3$-球中缠结的泛化获得的,我们称之为互补缠结。详细研究了互补缠结的性质。由于 Bleiler、Kirby-Lickorish、Livingston、Myers、Nakanishi 和 Soma。虚拟结的新挑战在于证明素数。与经典情况相反,并非 $\Sigma \times [0,1]$ 中的每个双曲线结都是素数,也不是每个复合结都是卫星。我们的结果是使用 $3$-球中缠结的泛化获得的,我们称之为互补缠结。详细研究了互补缠结的性质。由于 Bleiler、Kirby-Lickorish、Livingston、Myers、Nakanishi 和 Soma。虚拟结的新挑战在于证明素数。与经典情况相反,并非 $\Sigma \times [0,1]$ 中的每个双曲线结都是素数,也不是每个复合结都是卫星。我们的结果是使用 $3$-球中缠结的泛化获得的,我们称之为互补缠结。详细研究了互补缠结的性质。
更新日期:2020-09-04
down
wechat
bug