当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production routes to bio-acetic acid: life cycle assessment.
Biotechnology for Biofuels ( IF 6.1 ) Pub Date : 2020-09-03 , DOI: 10.1186/s13068-020-01784-y
Erik Budsberg 1 , Rodrigo Morales-Vera 2 , Jordan T Crawford 3 , Renata Bura 1 , Rick Gustafson 1
Affiliation  

Similar to biofuels, numerous chemicals produced from petroleum resources can also be made from biomass. In this research we investigate cradle to biorefinery exit gate life cycle impacts of producing acetic acid from poplar biomass using a bioconversion process. A key step in developing acetic acid for commercial markets is producing a product with 99.8% purity. This process has been shown to be potentially energy intensive and in this work two distillation and liquid–liquid extraction methods are evaluated to produce glacial bio-acetic acid. Method one uses ethyl acetate for extraction. Method two uses alamine and diisobutyl ketone. Additionally two different options for meeting energy demands at the biorefinery are modeled. Option one involves burning lignin and natural gas onsite to meet heat/steam and electricity demands. Option two uses only natural gas onsite to meet heat/steam demands, purchases electricity from the grid to meet biorefinery needs, and sells lignin from the poplar biomass as a co-product to a coal burning power plant to be co-fired with coal. System expansion is used to account for by-products and co-products for the main life cycle assessment. Allocation assessments are also performed to compare the life cycle tradeoffs of using system expansion, mass allocation, or economic allocation for bio-acetic acid production. Finally, a sensitivity analysis is conducted to determine potential effects of a decrease in the fermentation of glucose to acetic acid. Global warming potential (GWP) and fossil fuel use (FFU) for ethyl acetate extraction range from 1000–2500 kg CO2 eq. and 32–56 GJ per tonne of acetic acid, respectively. Alamine and diisobutyl ketone extraction method GWP and FFU ranges from −370–180 kg CO2 eq. and 15−25 GJ per tonne of acetic acid, respectively. Overall the alamine/diisobutyl ketone extraction method results in lower GWP and FFU values compared to the ethyl acetate extraction method. Only the alamine/diisobutyl extraction method finds GWP and FFU values lower than those of petroleum based acetic acid. For both extraction methods, exporting lignin as a co-product produced larger GWPs and FFU values compared to burning the lignin at the biorefinery.

中文翻译:

生物乙酸的生产路线:生命周期评估。

与生物燃料类似,从石油资源中生产的许多化学品也可以由生物质制成。在这项研究中,我们研究了使用生物转化工艺从杨树生物质生产乙酸的从摇篮到生物精炼厂出口生命周期的影响。为商业市场开发乙酸的一个关键步骤是生产纯度为 99.8% 的产品。该过程已被证明是潜在的能源密集型,在这项工作中,对两种蒸馏和液-液萃取方法进行了评估,以生产冰生物乙酸。方法一使用乙酸乙酯萃取。方法二使用丙胺和二异丁基酮。此外,对满足生物精炼厂能源需求的两种不同选择进行了建模。选项一涉及在现场燃烧木质素和天然气以满足热/蒸汽和电力需求。选项 2 仅在现场使用天然气来满足热/蒸汽需求,从电网购买电力以满足生物精炼厂的需求,并将杨树生物质中的木质素作为副产品出售给燃煤电厂以与煤炭共同燃烧。系统扩展用于计算主要生命周期评估的副产品和副产品。还执行分配评估以比较使用系统扩展、质量分配或经济分配进行生物乙酸生产的生命周期权衡。最后,进行敏感性分析以确定减少葡萄糖发酵成乙酸的潜在影响。乙酸乙酯萃取的全球变暖潜能值 (GWP) 和化石燃料使用 (FFU) 范围为 1000–2500 kg CO2 当量。和 32-56 GJ 每吨乙酸,分别。丙胺和二异丁基酮萃取方法 GWP 和 FFU 范围为 -370–180 kg CO2 eq。每吨乙酸分别消耗 15-25 GJ 和 15-25 GJ。总体而言,与乙酸乙酯萃取法相比,丙胺/二异丁基酮萃取法的 GWP 和 FFU 值较低。只有丙胺/二异丁基萃取法发现 GWP 和 FFU 值低于石油基乙酸。对于这两种提取方法,与在生物精炼厂燃烧木质素相比,将木质素作为副产品出口会产生更大的 GWP 和 FFU 值。只有丙胺/二异丁基萃取法发现 GWP 和 FFU 值低于石油基乙酸。对于这两种提取方法,与在生物精炼厂燃烧木质素相比,将木质素作为副产品出口会产生更大的 GWP 和 FFU 值。只有丙胺/二异丁基萃取法发现 GWP 和 FFU 值低于石油基乙酸。对于这两种提取方法,与在生物精炼厂燃烧木质素相比,将木质素作为副产品出口会产生更大的 GWP 和 FFU 值。
更新日期:2020-09-03
down
wechat
bug