当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A systematic analysis of Cu-based membrane-electrode assemblies for CO2 reduction through multiphysics simulation
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-09-02 , DOI: 10.1039/d0ee01604g
Lien-Chun Weng 1, 2, 3, 4, 5 , Alexis T. Bell 1, 2, 3, 4, 5 , Adam Z. Weber 1, 2, 3, 4
Affiliation  

Copper-based membrane-electrode assemblies (Cu-MEAs) hold promise for increasing the energy efficiency for the electrochemical reduction of CO2 to C2+ products, while maintaining high current densities. However, fundamental understanding of Cu-MEAs is still limited compared to the wealth of knowledge available for aqueous-electrolyte Cu systems. Physics-based modeling can assist in the transfer of knowledge from aqueous to vapor-fed systems by deconvoluting the impacts of various physical processes and accelerating the optimization of Cu-MEAs. Here, we simulate Cu-MEA performance and describe how the change in cell architecture leads to changes in cell performance and optimization. Our results reveal nonuniformity of product distribution in the catalyst layer, allowing us to explore catalyst-layer properties as design parameters for increasing the energy efficiency of C2+ product formation. We discuss multiphase flow and water-management issues and show how membrane properties, specifically the electro-osmotic coefficient, affect the efficacy of feeding liquid water to hydrate the membrane. Finally, we explore tradeoffs associated with operating Cu-MEAs at 350 K in order to increase the supply of water and the preferential formation of products with higher activation energies (typically C2+ products).

中文翻译:

通过多物理场模拟系统分析用于减少CO2的铜基膜电极组件

铜基膜电极组件(Cu-MEA)有望提高将CO 2电化学还原为C 2+的能量效率产品,同时保持高电流密度。但是,与可用于水电解质铜系统的大量知识相比,对铜-MEAs的基本了解仍然有限。基于物理的建模可通过对各种物理过程的影响进行反卷积并加速Cu-MEA的优化,从而有助于将知识从水相系统转移到气相系统。在这里,我们模拟Cu-MEA的性能,并描述电池结构的变化如何导致电池性能和优化的变化。我们的结果揭示了催化剂层中产物分布的不均匀性,使我们能够探索催化剂层的性质作为设计参数以提高C 2+的能效产品形成。我们讨论了多相流和水管理问题,并展示了膜的性能,特别是电渗系数如何影响进料液态水水合膜的功效。最后,我们探索了在350 K下与运行Cu-MEAs有关的折衷方案,以增加水的供应和优先形成具有较高活化能的产品(通常为C 2+产品)。
更新日期:2020-10-14
down
wechat
bug