当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A multiscale cohesive zone model for rate-dependent fracture of interfaces
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2020-09-03 , DOI: 10.1016/j.jmps.2020.104142
Tianhao Yang , Kenneth M. Liechti , Rui Huang

Rate-dependent fracture has been observed for a silicon/epoxy interface as well as other polymer interfaces, where both the interfacial strength and toughness increase with the separation rate. Motivated by this observation, we propose a multiscale approach to modeling a polymer interface, from atomic bonds to the macroscopic specimen, considering the energetics of bond stretching, the entropic effect of long molecular chains, the kinetics of thermally activated chain scission, and statistical distributions of the chain lengths. These multiscale features are seamlessly assembled to formulate a rate-dependent cohesive zone model, which is then implemented within a standard finite element package for numerical simulations. This model relates the macroscopically measurable interfacial properties (toughness, strength, and traction-separation relations) to molecular structures of the interface, and the rate dependence results naturally from the kinetics of damage evolution as a thermally activated process. The finite element simulations with the cohesive zone model are directly compared to double cantilever beam experiments for the rate-dependent fracture of a silicon/epoxy interface, yielding reasonable agreement with just a few parameters for the molecular structures of the interface. Such a multiscale, mechanism-based cohesive zone model offers a promising approach for modeling and understanding the rate-dependent fracture of polymer interfaces.



中文翻译:

界面速率相关断裂的多尺度粘结带模型

对于硅/环氧树脂界面以及其他聚合物界面,已经观察到速率依赖性断裂,其中界面强度和韧性均随分离率的增加而增加。受此观察结果的启发,我们提出了一种从原子键到宏观标本的聚合物界面建模的多尺度方法,其中考虑了键拉伸的能量,长分子链的熵效应,热活化断链的动力学以及统计分布链长。这些多尺度特征被无缝地组装以形成速率相关的内聚区模型,然后在标准的有限元软件包中实施该模型以进行数值模拟。该模型关联了宏观可测量的界面特性(韧性,强度,和牵引-分离关系)到界面的分子结构,并且速率依赖性自然是由作为热激活过程的损伤演化动力学产生的。将具有内聚力区域模型的有限元模拟直接与双悬臂梁实验进行了比较,以研究硅/环氧树脂界面的速率依赖性断裂,仅与界面分子结构的几个参数产生合理的一致性。这种基于机制的多尺度内聚区模型为建模和理解聚合物界面的速率依赖性断裂提供了一种有前途的方法。将具有内聚力区域模型的有限元模拟直接与双悬臂梁实验进行了比较,以研究硅/环氧树脂界面的速率依赖性断裂,仅与界面分子结构的几个参数产生合理的一致性。这种基于机制的多尺度内聚区模型为建模和理解聚合物界面的速率依赖性断裂提供了一种有前途的方法。将具有内聚力区域模型的有限元模拟直接与双悬臂梁实验进行了比较,以研究硅/环氧树脂界面的速率依赖性断裂,仅与界面分子结构的几个参数产生合理的一致性。这种基于机制的多尺度内聚区模型为建模和理解聚合物界面速率相关的断裂提供了一种有前途的方法。

更新日期:2020-09-03
down
wechat
bug