当前位置: X-MOL 学术Natl. Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic structures and topological properties in nickelates Lnn + 1NinO2n + 2
National Science Review ( IF 16.3 ) Pub Date : 2020-09-02 , DOI: 10.1093/nsr/nwaa218
Jiacheng Gao 1 , Shiyu Peng 1 , Zhijun Wang 1 , Chen Fang 1 , Hongming Weng 1
Affiliation  

After the significant discovery of the hole-doped nickelate compound Nd0.8Sr0.2NiO2, an analysis of the electronic structure, orbital components, Fermi surfaces and band topology could be helpful to understand the mechanism of its superconductivity. Based on the first-principles calculations, we find that Ni |$3d_{x^2-y^2}$| states contribute the largest Fermi surface. |$Ln~5d_{3z^2-r^2}$| states form an electron pocket at Γ, while 5dxy states form a relatively bigger electron pocket at A. These Fermi surfaces and symmetry characteristics can be reproduced by our two-band model, which consists of two elementary band representations: B1g@1a ⊕ A1g@1b. We find that there is a band inversion near A, giving rise to a pair of Dirac points along M–A below the Fermi level upon including spin-orbit coupling. Furthermore, we have performed the DFT+Gutzwiller calculations to treat the strong correlation effect of Ni 3d orbitals. In particular, the bandwidth of |$3d_{x^2-y^2}$| has been renormalized largely. After the renormalization of the correlated bands, the Ni 3dxy states and the Dirac points become very close to the Fermi level. Thus, a hole pocket at A could be introduced by hole doping, which may be related to the observed sign change of Hall coefficient. By introducing an additional Ni 3dxy orbital, the hole-pocket band and the band inversion can be captured in our modified model. Besides, the nontrivial band topology in the ferromagnetic two-layer compound La3Ni2O6 is discussed and the band inversion is associated with Ni |$3d_{x^2-y^2}$| and La 5dxy orbitals.

中文翻译:

镍酸盐中的电子结构和拓扑性质 Lnn + 1NinO2n + 2

空穴掺杂镍酸盐化合物Nd 0.8 Sr 0.2 NiO 2的重大发现后,对其电子结构、轨道分量、费米面和能带拓扑结构的分析有助于理解其超导性的机理。根据第一性原理计算,我们发现 Ni |$3d_{x^2-y^2}$| 态贡献最大的费米面。|$Ln~5d_{3z^2-r^2}$| 态在 Γ 处形成一个电子袋,而 5 d xy态在 A 处形成一个相对较大的电子袋。这些费米面和对称特性可以通过我们的双能带模型重现,该模型由两个基本能带表示:B 1g @1 a  ⊕  A 1 g @1 b。我们发现在 A 附近有一个带反转,在包括自旋轨道耦合后,在费米能级下方沿 M-A 产生一对狄拉克点。此外,我们已经执行了 DFT+Gutzwiller 计算来处理 Ni 3d 轨道的强相关效应。特别是|$3d_{x^2-y^2}$|的带宽 已在很大程度上重新规范化。在相关带重整化后,Ni 3 d xy态和狄拉克点变得非常接近费米能级。因此,空穴掺杂可以在 A 处引入空穴袋,这可能与观察到的霍尔系数符号变化有关。通过引入额外的 Ni 3d xy轨道,孔袋带和带反转可以在我们的修改模型中捕获。此外,讨论了铁磁两层化合物La 3 Ni 2 O 6 中的非平凡能带拓扑结构,能带反转与Ni |$3d_{x^2-y^2}$|有关。和 La 5 d xy轨道。
更新日期:2020-09-02
down
wechat
bug