当前位置: X-MOL 学术Front. Syst. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals
Frontiers in Systems Neuroscience ( IF 3.1 ) Pub Date : 2020-09-02 , DOI: 10.3389/fnsys.2020.00063
Pasquale Cardellicchio , Pauline M. Hilt , Elisa Dolfini , Luciano Fadiga , Alessandro D’Ausilio

Modulation of cortical beta rhythm (15–30 Hz) is present during preparation for and execution of voluntary movements as well as during somatosensory stimulation. A rebound in beta synchronization is observed after the end of voluntary movements as well as after somatosensory stimulation and is believed to describe the return to baseline of sensorimotor networks. However, the contribution of efferent and afferent signals to the beta rebound remains poorly understood. Here, we applied electrical median nerve stimulation (MNS) to the right side followed by transcranial magnetic stimulation (TMS) on the left primary motor cortex after either 15 or 25 ms. Because the afferent volley reaches the somatosensory cortex after about 20 ms, TMS on the motor cortex was either anticipating or following the cortical arrival of the peripheral stimulus. We show modulations in different beta sub-bands and in both hemispheres, following a pattern of greater resynchronization when motor signals are paired with a peripheral one. The beta rebound in the left hemisphere (stimulated) is modulated in its lower frequency range when TMS precedes the cortical arrival of the afferent volley. In the right hemisphere (unstimulated), instead, the increase is limited to higher beta frequencies when TMS is delivered after the arrival of the afferent signal. In general, we demonstrate that the temporal integration of afferent and efferent signals plays a key role in the genesis of the beta rebound and that these signals may be carried in parallel by different beta sub-bands.

中文翻译:

Beta 反弹作为体感和运动信号时间整合的指标

在准备和执行随意运动以及体感刺激期间,存在皮质 β 节律 (15-30 Hz) 的调节。在随意运动结束后以及在体感刺激后观察到 beta 同步的反弹,据信这描述了感觉运动网络的基线恢复。然而,传出和传入信号对 beta 反弹的贡献仍然知之甚少。在这里,我们对右侧应用正中神经电刺激 (MNS),然后在 15 或 25 毫秒后对左侧初级运动皮层进行经颅磁刺激 (TMS)。因为传入的齐射在大约 20 毫秒后到达躯体感觉皮层,运动皮层上的 TMS 要么预期,要么跟随外周刺激的皮层到达。我们展示了不同β子带和两个半球的调制,当运动信号与外围信号配对时,遵循更大的再同步模式。当 TMS 在传入性齐射到达皮质之前时,左半球的 β 反弹(受刺激)在其较低频率范围内被调制。相反,在右半球(未受刺激),当传入信号到达后传递 TMS 时,增加仅限于更高的 beta 频率。总的来说,我们证明传入和传出信号的时间整合在 β 反弹的起源中起着关键作用,并且这些信号可能由不同的 β 子带并行携带。当电机信号与外围设备配对时,遵循更大的重新同步模式。当 TMS 在传入性齐射到达皮质之前时,左半球的 β 反弹(受刺激)在其较低频率范围内被调制。相反,在右半球(未受刺激),当传入信号到达后传递 TMS 时,增加仅限于更高的 beta 频率。总的来说,我们证明传入和传出信号的时间整合在 β 反弹的起源中起着关键作用,并且这些信号可能由不同的 β 子带并行携带。当电机信号与外围设备配对时,遵循更大的重新同步模式。当 TMS 在传入性齐射到达皮质之前时,左半球的 β 反弹(受刺激)在其较低频率范围内被调制。相反,在右半球(未受刺激),当传入信号到达后传递 TMS 时,增加仅限于更高的 beta 频率。总的来说,我们证明传入和传出信号的时间整合在 β 反弹的起源中起着关键作用,并且这些信号可能由不同的 β 子带并行携带。相反,在右半球(未受刺激),当传入信号到达后传递 TMS 时,增加仅限于更高的 beta 频率。总的来说,我们证明传入和传出信号的时间整合在 β 反弹的起源中起着关键作用,并且这些信号可能由不同的 β 子带并行携带。相反,在右半球(未受刺激),当传入信号到达后传递 TMS 时,增加仅限于更高的 beta 频率。总的来说,我们证明传入和传出信号的时间整合在 β 反弹的起源中起着关键作用,并且这些信号可能由不同的 β 子带并行携带。
更新日期:2020-09-02
down
wechat
bug