当前位置: X-MOL 学术Front. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual Hydrogen- and Oxygen-Transport Membrane Reactor for Solar-Driven Syngas Production
Frontiers in Energy Research ( IF 2.6 ) Pub Date : 2020-08-17 , DOI: 10.3389/fenrg.2020.570884
Maria Tou , Adrian Grylka , Arnaud Schuller , Brendan Bulfin , Aldo Steinfeld , Ronald Michalsky

A novel thermochemical dual-membrane reactor is considered with the goal of efficiently converting CO2 to fuels using concentrated solar energy as the process heat source. In contrast to the temperature-swing redox cycle, in this isothermal system the thermolysis of H2O at above 1,800 K is assisted by removal of O2 across an oxygen-permeable membrane and of H2 across a hydrogen-permeable membrane. The latter is consumed by a stream of CO2via the reverse water-gas shift reaction to re-form H2O and continuously generate CO. The net reaction is the splitting of CO2 to CO and 12O2. Because reactions at such high temperature are expected to be thermodynamically controlled, thermodynamic models are developed to calculate the equilibrium limits of the proposed dual-membrane configuration. For comparison, two reference configurations comprising either a single oxygen-permeable membrane or a single hydrogen-permeable membrane are analyzed. At 1,800 K, 1 bar total pressure, and (not applicable for the hydrogen-membrane reactor) 10 Pa O2, the equilibrium mole fraction of fuel is 2% with a single oxygen membrane, 4% with a single hydrogen membrane, and 15% in the dual-membrane system. In all cases, total selectivity of CO2 to CO and O2 is obtained. Assuming thermodynamic equilibrium, the solar-to-fuel energy efficiency realistically attainable is 4% with a single oxygen membrane, 8% with a single hydrogen membrane, and 17% in the dual-membrane configuration at the aforementioned conditions. By increasing the pressure of the feed of steam to 100 bar, the dual-membrane model system could theoretically approach full mass conversion of CO2 and reach up to 26% solar-to-fuel energy efficiency. However, developing appropriate and stable ceramic materials for such a system poses a significant challenge.



中文翻译:

太阳能驱动合成气生产的双氢和氧传输膜反应器

考虑到一种新颖的热化学双膜反应器,其目标是使用集中的太阳能作为过程热源将CO 2有效地转化为燃料。与温度波动的氧化还原循环相反,在该等温系统中,H 2 O在1,800 K以上的热分解是通过跨透氧膜的O 2和跨透氢膜的H 2的去除而实现的。后者被一股CO 2流消耗通过逆水煤气变换反应重新形成H 2 O并连续生成CO。净反应是将CO 2分解为CO和1个2Ø2。由于预计在这种高温下的反应是热力学控制的,因此开发了热力学模型以计算所提出的双膜构型的平衡极限。为了比较,分析了包括单个透氧膜或单个透氢膜的两个参考构型。在1,800 K,总压力为1 bar,并且(不适用于氢膜反应器)10 Pa O 2的情况下,单个氧气膜的燃料平衡摩尔分数为2%,单个氢气膜的燃料平衡摩尔分数为4%,而15在双膜系统中的百分比。在所有情况下,CO 2对CO和O 2的总选择性获得。假设热力学平衡,在上述条件下,单层氧气膜实际可获得的太阳能燃料效率为4%,单层氢气膜为8%,在双膜构型下为17%。通过将蒸汽进料的压力提高到100 bar,该双膜模型系统理论上可以达到CO 2的完全质量转化,并达到26%的太阳能转化为燃料的能效。然而,为这种系统开发合适且稳定的陶瓷材料提出了巨大的挑战。

更新日期:2020-09-02
down
wechat
bug