当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A disordered rock salt anode for fast-charging lithium-ion batteries
Nature ( IF 50.5 ) Pub Date : 2020-09-02 , DOI: 10.1038/s41586-020-2637-6
Haodong Liu 1 , Zhuoying Zhu 1 , Qizhang Yan 1 , Sicen Yu 1 , Xin He 2 , Yan Chen 3 , Rui Zhang 4 , Lu Ma 5 , Tongchao Liu 6 , Matthew Li 6 , Ruoqian Lin 7 , Yiming Chen 1 , Yejing Li 1 , Xing Xing 1 , Yoonjung Choi 1 , Lucy Gao 8 , Helen Sung-Yun Cho 9 , Ke An 3 , Jun Feng 10 , Robert Kostecki 2 , Khalil Amine 6 , Tianpin Wu 11 , Jun Lu 6 , Huolin L Xin 4 , Shyue Ping Ong 1, 12 , Ping Liu 1, 12
Affiliation  

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications1-3. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt4,5 Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite6,7 reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2)8,9. Further, disordered rock salt Li3V2O5 can perform over 1,000 charge-discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.

中文翻译:

用于快速充电锂离子电池的无序岩盐阳极

具有高能量密度、可以高倍率安全充电和放电的可充电锂离子电池是电气化运输和其他应用的理想选择1-3。然而,当前阳极的次优嵌入电位导致能量密度、功率和安全性之间的权衡。在这里,我们报告无序岩盐4,5 Li3+xV2O5 可用作快速充电阳极,与 Li/Li+ 参考电极相比,它可以在约 0.6 伏的平均电压下可逆地循环两个锂离子。如果使用适当的充电控制,与石墨6,7 相比增加的电势会降低锂金属电镀的可能性,从而缓解主要的安全问题(与锂枝晶生长相关的短路)。此外,具有无序岩盐 Li3V2O5 阳极的锂离子电池产生的电池电压远高于使用商业快速充电钛酸锂阳极或其他嵌入阳极候选物(Li3VO4 和 LiV0.5Ti0.5S2)8,9 的电池。此外,无序岩盐 Li3V2O5 可以进行 1,000 多次充放电循环,容量衰减可忽略不计,并具有出色的倍率性能,可在 20 秒内提供超过 40% 的容量。我们将无序岩盐 Li3V2O5 的低电压和高倍率能力归因于通过 ab initio 计算揭示的具有低能垒的再分配锂嵌入机制。这种低电位、高速率的嵌入反应可用于识别用于快速充电、长寿命锂离子电池的其他金属氧化物阳极。
更新日期:2020-09-02
down
wechat
bug