当前位置: X-MOL 学术Biogeosciences › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbial diversity-informed modelling of polar marine ecosystem functions
Biogeosciences ( IF 3.9 ) Pub Date : 2020-09-02 , DOI: 10.5194/bg-2020-302
Hyewon Heather Kim , Jeff S. Bowman , Ya-Wei Luo , Hugh W. Ducklow , Oscar M. Schofield , Deborah K. Steinberg , Scott C. Doney

Abstract. Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their variability is key to the balance between the production and consumption of organic matter and ultimately particle export in the ocean. Here we investigate a potential link between bacterial traits and ecosystem functions in a rapidly changing polar marine ecosystem based on a bacteria-oriented ecosystem model. Using a data-assimilation scheme we utilize the observations of bacterial groups with different physiological states to constrain the group-specific bacterial ecosystem functions. We also investigate the association of the modelled bacterial and other ecosystem functions with eight recurrent modes representative of different bacterial taxonomic traits. High nucleic acid (HNA) bacteria show relatively high cell-specific bacterial production, respiration, and utilization of the semi-labile dissolved organic carbon pool compared to low nucleic acid (LNA) bacteria. Both taxonomy and physiological states of the bacteria are strong predictors of bacterial carbon demand, net primary production, and particle export. Numerical experiments under perturbed climate conditions show overall increased bacterial activity and a potential shift from LNA- to HNA-dominated bacterial communities in a warming ocean. Microbial diversity via different taxonomic and physiological traits informs our ecosystem model, providing insights into key bacterial and ecosystem functions in a changing environment.

中文翻译:

极地海洋生态系统功能的微生物多样性信息建模

摘要。异养海洋细菌利用有机碳进行生长和生物质合成。因此,它们的可变性是在有机物的生产和消费以及最终海洋中的颗粒出口之间取得平衡的关键。在这里,我们研究了基于细菌导向的生态系统模型的快速变化的极地海洋生态系统中细菌特征与生态系统功能之间的潜在联系。使用数据同化方案,我们利用具有不同生理状态的细菌群体的观察值来约束特定于群体的细菌生态系统功能。我们还调查了代表不同细菌分类特征的八种复发模式对细菌模型和其他生态系统功能的影响。高核酸(HNA)细菌显示出较高的细胞特异性细菌产生,与低核酸(LNA)细菌相比,呼吸和半不稳定溶解的有机碳库的利用率高。细菌的分类和生理状态都是细菌碳需求,净初级生产和颗粒出口的有力预测指标。在扰动的气候条件下进行的数值实验表明,在变暖的海洋中,细菌的活动总体增加,并且可能从LNA到HNA为主的细菌群落转变。通过不同分类和生理特征的微生物多样性为我们的生态系统模型提供了信息,可洞察不断变化的环境中关键细菌和生态系统的功能。细菌的分类和生理状态都是细菌碳需求,净初级生产和颗粒出口的有力预测指标。在扰动的气候条件下进行的数值实验表明,在变暖的海洋中,细菌的活动总体增加,并且可能从LNA到HNA为主的细菌群落转变。通过不同分类和生理特征的微生物多样性为我们的生态系统模型提供了信息,可洞察不断变化的环境中关键细菌和生态系统的功能。细菌的分类和生理状态都是细菌碳需求,净初级生产和颗粒出口的有力预测指标。在扰动的气候条件下进行的数值实验表明,在变暖的海洋中,细菌的活动总体增加,并且可能从LNA到HNA为主的细菌群落转变。通过不同分类和生理特性的微生物多样性为我们的生态系统模型提供了信息,可洞察不断变化的环境中关键细菌和生态系统的功能。
更新日期:2020-09-02
down
wechat
bug