当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metal Chalcogenide Supertetrahedral Clusters: Synthetic Control over Assembly, Dispersibility, and Their Functional Applications.
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2020-09-02 , DOI: 10.1021/acs.accounts.0c00381
Jiaxu Zhang 1 , Xianhui Bu 2 , Pingyun Feng 3 , Tao Wu 1
Affiliation  

Metal chalcogenide supertetrahedral clusters (MCSCs) bear the closest structural resemblance to II–VI or I–III–VI semiconductor nanocrystals and can be considered as well-defined ultrasmall “quantum dots” (QDs). Compared to traditional colloidal QDs that are typically associated with size dispersity, irregular surface atomic structures, poorly defined core–ligand interfaces, and random defect/dopant sites, the nano- or subnano-sized MCSCs feature precise structural properties such as atomically uniform size, precise structure, and ordered dopant distribution, all of which offer ample opportunities for a broad and in-depth understanding of the correlation between the precise local structure and site- or size-dependent properties, which are critical to the exploitation of their functional applications. Our previous Account in 2005 provided a narrative on the efforts to expand the structural diversity of open-framework materials using different-sized and compositionally tunable clusters as building blocks with a primary objective of integrating the semiconducting properties with porosity in zeolite-type solids. Over the past 15 years, significant progress has been made, particularly in the synthetic control of discrete clusters, allowing the establishment of the composition–structure–property correlation of the MCSCs to guide the optimization of their properties for various applications. In the present Account, the recent progress in MCSC-based chemistry is reviewed from three aspects: (1) controllable synthesis of new members and types of MCSC models and the development of organic-ligand-directed hybrid assembly modes for MCSC-based open frameworks; (2) new synthetic strategies for the discretization of MCSCs in crystal lattice and their dispersibility in solvents, affording practical applications of pure inorganic MCSCs as nanomaterials; and (3) functionality of MCSC-based materials including photochemical and electrochemical properties triggered by precise dopant/defect sites, open-framework-related functional expansion via host–guest chemistry, and dispersed cluster-based composite materials with synergy from functional multimetallic components. All these advances show that MCSCs with well-defined structures and atomically precise dopant/defect sites are powerful model systems for establishing the precise structure–composition–property correlation and understanding the photophysical dynamic behaviors, both of which are difficult or impossible to achieve in the traditional QD system. Perspectives on their potential applications are presented in terms of the amorphous assemblies of monodispersed MCSCs, MCSC-based two-dimensional layered materials, and optical/electronic devices.

中文翻译:

金属硫属化物超四面体簇:对组装,分散性及其功能应用的综合控制。

金属硫属化物超四面体簇(MCSC)与II–VI或I–III–VI半导体纳米晶体具有最接近的结构相似性,可以被认为是定义明确的超小型“量子点”(QD)。与通常与尺寸分散,不规则的表面原子结构,定义不清的核-配体界面以及随机的缺陷/掺杂位点相关的传统胶体量子点相比,纳米或亚纳米级的MCSC具有精确的结构特性,例如原子尺寸均匀,精确的结构和有序的掺杂剂分布,所有这些都为广泛而深入地了解精确的局部结构与位置或尺寸相关的特性之间的相关性提供了充足的机会,这对于开发其功能应用至关重要。我们以前在2005年的报告中叙述了使用不同尺寸和组成可调的簇作为构建块来扩大开放框架材料的结构多样性的努力,其主要目的是将沸石的固体中的半导体特性与孔隙率结合在一起。在过去的15年中,已经取得了重大进展,特别是在离散簇的综合控制方面,建立了MCSC的成分-结构-属性相关性,可指导其在各种应用中的性能优化。在本报告中,将从三个方面回顾基于MCSC的化学的最新进展:(1)可控制的MCSC模型的新成员和类型的综合以及基于MCSC的开放框架的有机配体定向混合组装模式的开发;(2)晶格中MCSC离散化及其在溶剂中的分散性的新合成策略,为纯无机MCSCs作为纳米材料提供了实际应用;(3)基于MCSC的材料的功能性,包括由精确的掺杂剂/缺陷位点触发的光化学和电化学性质,通过主体-客体化学作用进行的开放框架相关的功能扩展以及具有功能性多金属成分协同作用的分散的基于簇的复合材料。所有这些进展表明,具有良好定义的结构和原子上精确的掺杂剂/缺陷位点的MCSC是建立精确的结构-成分-性质相关性和理解光物理动力学行为的强大模型系统,而这在光电子学中很难或不可能实现。传统的QD系统。根据单分散MCSC的无定形组件,基于MCSC的二维分层材料以及光学/电子设备,介绍了它们的潜在应用前景。
更新日期:2020-10-21
down
wechat
bug