当前位置: X-MOL 学术GM Crops Food › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations.
GM Crops & Food ( IF 4.5 ) Pub Date : 2020-09-02 , DOI: 10.1080/21645698.2020.1808423
Sajid Fiaz 1 , Xiukang Wang 2 , Afifa Younas 3 , Badr Alharthi 4, 5 , Adeel Riaz 6 , Habib Ali 7, 8
Affiliation  

Hybrid seeds of several important crops with supreme qualities including yield, biotic and abiotic stress tolerance have been cultivated for decades. Thus far, a major challenge with hybrid seeds is that they do not have the ability to produce plants with the same qualities over subsequent generations. Apomixis, an asexual mode of reproduction by avoiding meiosis, exists naturally in flowering plants, and ultimately leads to seed production. Apomixis has the potential to preserve hybrid vigor for multiple generations in economically important plant genotypes. The evolution and genetics of asexual seed production are unclear, and much more effort will be required to determine the genetic architecture of this phenomenon. To fix hybrid vigor, synthetic apomixis has been suggested. The development of MiMe (mitosis instead of meiosis) genotypes has been utilized for clonal gamete production. However, the identification and parental origin of genes responsible for synthetic apomixis are little known and need further clarification. Genome modifications utilizing genome editing technologies (GETs), such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (cas), a reverse genetics tool, have paved the way toward the utilization of emerging technologies in plant molecular biology. Over the last decade, several genes in important crops have been successfully edited. The vast availability of GETs has made functional genomics studies easy to conduct in crops important for food security. Disruption in the expression of genes specific to egg cell MATRILINEAL (MTL) through the CRISPR/Cas genome editing system promotes the induction of haploid seed, whereas triple knockout of the Baby Boom (BBM) genes BBM1, BBM2, and BBM3 cause embryo arrest and abortion, which can be fully rescued by male-transmitted BBM1. The establishment of synthetic apomixis by engineering the MiMe genotype by genome editing of BBM1 expression or disruption of MTL leads to clonal seed production and heritability for multiple generations. In the present review, we discuss current developments related to the use of CRISPR/Cas technology in plants and the possibility of promoting apomixis in crops to preserve hybrid vigor. In addition, genetics, evolution, epigenetic modifications, and strategies for MiMe genotype development are discussed in detail.



中文翻译:


无融合生殖和诱导无融合生殖以保持多代杂种活力的策略。



数十年来,几种重要作物的杂交种子都具有极高的品质,包括产量、生物和非生物胁迫耐受性。到目前为止,杂交种子的一个主要挑战是它们无法在后代中产生具有相同品质的植物。无融合生殖是一种避免减数分裂的无性繁殖模式,天然存在于开花植物中,并最终产生种子。无融合生殖有可能在经济上重要的植物基因型中保持多代杂种活力。无性种子产生的进化和遗传学尚不清楚,需要付出更多努力来确定这种现象的遗传结构。为了修复杂种优势,有人建议采用合成无融合生殖。 MiMe (有丝分裂而不是减数分裂)基因型的开发已用于克隆配子生产。然而,负责合成无融合生殖的基因的鉴定和亲本起源却知之甚少,需要进一步澄清。利用基因组编辑技术 (GET) 进行基因组修饰,例如成簇规则间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (cas)(一种反向遗传学工具),为新兴技术在植物分子生物学中的应用铺平了道路。在过去的十年中,重要作物中的几个基因已被成功编辑。 GET 的广泛可用性使得功能基因组学研究很容易在对粮食安全至关重要的作物中进行。 通过 CRISPR/Cas 基因组编辑系统破坏卵细胞MATRILINEAL ( MTL ) 特异基因的表达可促进单倍体种子的诱导,而婴儿潮( BBM ) 基因BBM1、BBM2BBM3的三重敲除会导致胚胎停滞和流产,可以通过男性传播的BBM1完全挽救。通过对BBM1表达进行基因组编辑或破坏MTL来改造MiMe基因型,建立合成无融合生殖,从而产生克隆种子并具有多代遗传力。在本综述中,我们讨论了与植物中使用 CRISPR/Cas 技术相关的最新进展,以及促进作物无融合生殖以保持杂种活力的可能性。此外,还详细讨论了遗传学、进化、表观遗传修饰和MiMe基因型发育策略。

更新日期:2020-09-02
down
wechat
bug