当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Active vision shapes and coordinates flight motor responses in flies.
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2020-09-15 , DOI: 10.1073/pnas.1920846117
Benjamin Cellini 1 , Jean-Michel Mongeau 2
Affiliation  

Animals use active sensing to respond to sensory inputs and guide future motor decisions. In flight, flies generate a pattern of head and body movements to stabilize gaze. How the brain relays visual information to control head and body movements and how active head movements influence downstream motor control remains elusive. Using a control theoretic framework, we studied the optomotor gaze stabilization reflex in tethered flight and quantified how head movements stabilize visual motion and shape wing steering efforts in fruit flies (Drosophila). By shaping visual inputs, head movements increased the gain of wing steering responses and coordination between stimulus and wings, pointing to a tight coupling between head and wing movements. Head movements followed the visual stimulus in as little as 10 ms—a delay similar to the human vestibulo-ocular reflex—whereas wing steering responses lagged by more than 40 ms. This timing difference suggests a temporal order in the flow of visual information such that the head filters visual information eliciting downstream wing steering responses. Head fixation significantly decreased the mechanical power generated by the flight motor by reducing wingbeat frequency and overall thrust. By simulating an elementary motion detector array, we show that head movements shift the effective visual input dynamic range onto the sensitivity optimum of the motion vision pathway. Taken together, our results reveal a transformative influence of active vision on flight motor responses in flies. Our work provides a framework for understanding how to coordinate moving sensors on a moving body.



中文翻译:

主动视觉可塑造并协调果蝇的飞行运动响应。

动物使用主动感测来响应感官输入并指导未来的运动决策。在飞行中,苍蝇会产生一种头部和身体运动的模式,以稳定视线。大脑如何传递视觉信息以控制头部和身体的运动,以及主动的头部运动如何影响下游的运动控制仍然难以捉摸。使用控制理论框架,我们研究了束缚飞行中的光凝视稳定反射,并定量了果蝇的头部运动如何稳定视觉运动和塑造机翼操纵力(果蝇)。通过塑造视觉输入,头部运动增加了机翼转向响应和刺激与机翼之间协调的增益,表明机头和机翼运动之间的紧密耦合。头部运动在视觉刺激下仅需10毫秒(与人类前庭眼反射相似的延迟),而机翼转向响应则滞后40毫秒以上。该时间差暗示视觉信息流中的时间顺序,使得头部过滤引起下游机翼转向响应的视觉信息。头部固定通过降低机翼拍频率和总推力,大大降低了飞行电机产生的机械动力。通过模拟基本运动检测器阵列,我们表明头部运动将有效的视觉输入动态范围转移到了运动视觉路径的最佳灵敏度上。综上所述,我们的结果揭示了主动视觉对果蝇飞行运动反应的影响。我们的工作为了解如何协调运动物体上的运动传感器提供了一个框架。

更新日期:2020-09-16
down
wechat
bug