当前位置: X-MOL 学术Phys. Status Solidi A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using Active Surface Plasmons in a Multibit Optical Storage Device to Emulate Long‐Term Synaptic Plasticity
Physica Status Solidi (A) - Applications and Materials Science Pub Date : 2020-09-01 , DOI: 10.1002/pssa.202000354
Seon-Young Rhim 1 , Giovanni Ligorio 1 , Felix Hermerschmidt 1 , Jana Hildebrandt 2 , Michael Pätzel 2 , Stefan Hecht 2, 3, 4 , Emil J. W. List-Kratochvil 1, 5
Affiliation  

Artificial intelligence takes inspiration from the functionalities and structure of the brain to solve complex tasks and allow learning. Yet, hardware realization that simulates the synaptic activities realized with electrical devices still lags behind computer software implementation, which has improved significantly during the past decade. Herein, the capability to emulate synaptic functionalities by exploiting surface plasmon polaritons (SPPs) is shown. By depositing photochromic switching molecules (diarylethene) on a thin film of gold, it is possible to reliably control the electronic configuration of the molecules upon illumination cycles with UV and visible light. These reversible changes modulate the dielectric function of the photochromic film and thus enable the effective control of the SPP dispersion relation at the molecule/gold interface. The plasmonic device displays fundamental functions of a synapse such as potentiation, depression, and long‐term plasticity. The integration of such plasmonic devices in an artificial neural network is deployed in plasmonic neuroinspired circuits for optical computing and data transmission.

中文翻译:

在多位光学存储设备中使用主动表面等离激元来模拟长期突触可塑性

人工智能从大脑的功能和结构中汲取灵感,以解决复杂的任务并允许学习。然而,模拟通过电子设备实现的突触活动的硬件实现仍然落后于计算机软件的实现,在过去的十年中,软件实现已得到了显着改善。在本文中,显示了通过利用表面等离子体激元极化子(SPPs)来模拟突触功能的能力。通过在金的薄膜上沉积光致变色开关分子(二芳基乙烯),可以在用紫外线和可见光进行照明循环时可靠地控制分子的电子构型。这些可逆变化调节了光致变色膜的介电功能,因此能够有效控制分子/金界面处的SPP分散关系。等离子体设备显示出突触的基本功能,例如增强,抑制和长期可塑性。这种等离子设备在人工神经网络中的集成部署在等离子神经启发电路中,用于光学计算和数据传输。
更新日期:2020-10-22
down
wechat
bug