当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review of black carbon in snow and ice and its impact on the cryosphere
Earth-Science Reviews ( IF 10.8 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.earscirev.2020.103346
Shichang Kang , Yulan Zhang , Yun Qian , Hailong Wang

Abstract Black carbon (BC) has emerged as an important short-lived climate forcer. Due to its light absorption properties, BC can darken the snow/ice surface, affect the energy balance, and further lead to acceleration of the melting of the cryosphere (e.g., glaciers, snow cover, and sea ice). By reviewing the recent published literatures, we present an overview of the historical changes, spatial distribution of BC in snow/ice, and how these changes are related to the cryospheric melting. Ice core records show a rapid increase of BC concentrations that began in the 1850s and continued throughout the 20th century, which is consistent with an increase of BC emissions owing to industrialization. A decrease of BC amount since 1970s in Arctic and European ice cores has been partially attributed to the Clean Air Act. However, in the Himalayas, BC records show a continuous increase during this period. Generally, BC concentrations in snow and ice in the mid-latitude regions are one to two orders of magnitude higher than those in the polar regions. In particular, BC concentrations in aged snow and granular ice in the ablation areas of mountain glaciers are one to three orders of magnitude higher than those in fresh snow or snowpits in the glacier accumulation areas due to BC accumulation during melting season. BC in the surface snow/ice is responsible for about 20% of the albedo reduction in the Tibetan Plateau during glacier melt season. Globally, observations and modeling results indicate that radiative forcing (RF) induced by BC in snow and ice is highest in the mid-latitudes, ranging from several W m−2 in fresh snow to hundreds of W m−2 in aged snow and granular ice in the glacier ablation areas. The large BC-in-snow RF and associated snow albedo feedback lead to an acceleration in the total glacier melt (approximately 20%) and/or a reduction in the duration of the snow cover by several days, resulting in an increase of glacier discharge. Given our limited understanding of quantifying the role of BC in cryospheric melting, it is important to synthesize the existing research on the multi-scale processes related to BC in snow and ice to identify the gaps in our understanding of these processes and to propose a path forward to improve the quality of our observations of the aforementioned phenomena to fill these gaps.

中文翻译:

冰雪中的黑碳及其对冰冻圈的影响综述

摘要 黑碳 (BC) 已成为一种重要的短期气候驱动力。由于其光吸收特性,BC可使雪/冰表面变暗,影响能量平衡,并进一步导致冰冻圈(如冰川、积雪和海冰)融化加速。通过回顾最近发表的文献,我们概述了雪/冰中 BC 的历史变化、空间分布以及这些变化与冰冻圈融化的关系。冰芯记录显示,从 1850 年代开始并持续到 20 世纪,BC 浓度迅速增加,这与工业化导致 BC 排放量增加是一致的。自 1970 年代以来北极和欧洲冰芯中 BC 量的减少部分归因于《清洁空气法案》。然而,在喜马拉雅山,BC 记录显示在此期间持续增加。一般来说,中纬度地区雪和冰中的BC浓度比极地地区高一到两个数量级。特别是山地冰川消融区的老雪和粒状冰中的BC浓度比冰川堆积区的新雪或雪坑由于BC在融化季节的积累而高出一到三个数量级。在冰川融化季节,地表雪/冰中的BC约占青藏高原反照率减少的20%。在全球范围内,观测和建模结果表明,BC 在雪和冰中引起的辐射强迫 (RF) 在中纬度地区最高,范围从新鲜雪中的数 W m-2 到冰川消融区的老化雪和粒状冰中的数百 W m-2。大的 BC-in-snow RF 和相关的雪反照率反馈导致总冰川融化加速(约 20%)和/或积雪持续时间减少几天,导致冰川流量增加. 鉴于我们对量化 BC 在冰冻圈融化中的作用的理解有限,重要的是综合现有关于与雪和冰中 BC 相关的多尺度过程的研究,以确定我们对这些过程的理解中的差距并提出一条路径改进我们对上述现象的观察质量以填补这些空白。大的 BC-in-snow RF 和相关的雪反照率反馈导致总冰川融化加速(约 20%)和/或积雪持续时间减少几天,导致冰川流量增加. 鉴于我们对量化 BC 在冰冻圈融化中的作用的理解有限,重要的是综合现有关于与雪和冰中 BC 相关的多尺度过程的研究,以确定我们对这些过程的理解中的差距并提出一条路径改进我们对上述现象的观察质量以填补这些空白。大的 BC-in-snow RF 和相关的雪反照率反馈导致总冰川融化加速(约 20%)和/或积雪持续时间减少几天,导致冰川流量增加. 鉴于我们对量化 BC 在冰冻圈融化中的作用的理解有限,重要的是综合现有关于与雪和冰中 BC 相关的多尺度过程的研究,以确定我们对这些过程的理解中的差距并提出一条路径改进我们对上述现象的观察质量以填补这些空白。
更新日期:2020-11-01
down
wechat
bug