当前位置: X-MOL 学术Adv. Eng. Softw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toolpath planning for additive manufacturing using sliced model decomposition and metaheuristic algorithms
Advances in Engineering Software ( IF 4.0 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.advengsoft.2020.102906
Wenyang Liu , Ling Chen , Guangzhen Mai , Lijun Song

Fabrication efficiency has long been a challenge for additive manufacturing. Standard toolpath generation processes usually give rise to a significant number of non-productive motions that undermine production efficiency and degrade part quality due to frequent acceleration and deceleration in wasted motions. In this paper, we introduce an optimized toolpath generation process that comprises of decomposition of sliced model and optimization of fabrication sequences to minimize non-productive toolpaths. Unlike standard toolpaths, optimized toolpaths carry out fabrication of multiple objects in a staggered sequence to maximize manufacturing efficiency. To tackle the problem of interference between a printhead and objects due to changes in the fabrication sequence of layered depositions, an algorithm that adaptively determines collision-free heights is developed. Additionally, sliced model decomposition considerably reduces the number of entities for optimization. The computational cost involved in toolpath optimization is independent of slicing interval; therefore, the effectiveness and applicability of the proposed optimization approach are well maintained for small slicing intervals. Benchmarks are analyzed to demonstrate the effectiveness and robustness of the proposed toolpath planning approach, and two physical experiments are carried out using fused deposition modeling (FDM) and direct metal deposition (DMD) technologies. Non-productive toolpaths are reduced remarkably, and the desired fabrication quality is achieved for both non-metal and metal structures.



中文翻译:

使用切片模型分解和元启发式算法进行增材制造的刀具路径规划

长期以来,制造效率一直是增材制造的挑战。标准的刀具轨迹生成过程通常会导致大量非生产性运动,这些运动会由于浪费运动中的频繁加速和减速而降低生产效率并降低零件质量。在本文中,我们介绍了一种优化的刀具路径生成过程,该过程包括切片模型的分解和制造顺序的优化,以最大程度地减少非生产性刀具路径。与标准刀具路径不同,优化的刀具路径以交错顺序执行多个对象的制造,以最大程度地提高制造效率。为了解决由于分层沉积物的制造顺序的变化而导致的打印头与物体之间的干扰的问题,开发了一种自适应确定无碰撞高度的算法。此外,切片模型分解大大减少了要优化的实体数量。刀具路径优化所涉及的计算成本与切片间隔无关。因此,对于较小的切片间隔,可以很好地保持所提出的优化方法的有效性和适用性。分析基准以证明所提出的刀具路径规划方法的有效性和鲁棒性,并且使用熔融沉积建模(FDM)和直接金属沉积(DMD)技术进行了两个物理实验。非生产性刀具路径显着减少,并且非金属和金属结构均可达到所需的制造质量。切片模型分解大大减少了要优化的实体数量。刀具路径优化所涉及的计算成本与切片间隔无关。因此,对于较小的切片间隔,可以很好地保持所提出的优化方法的有效性和适用性。分析基准以证明所提出的刀具路径规划方法的有效性和鲁棒性,并且使用熔融沉积建模(FDM)和直接金属沉积(DMD)技术进行了两个物理实验。非生产性刀具路径显着减少,并且非金属和金属结构均可达到所需的制造质量。切片模型分解大大减少了要优化的实体数量。刀具路径优化所涉及的计算成本与切片间隔无关。因此,对于较小的切片间隔,可以很好地保持所提出的优化方法的有效性和适用性。分析基准以证明所提出的刀具路径规划方法的有效性和鲁棒性,并且使用熔融沉积建模(FDM)和直接金属沉积(DMD)技术进行了两个物理实验。非生产性刀具路径显着减少,并且非金属和金属结构均可达到所需的制造质量。对于较小的切片间隔,可以很好地保持所提出的优化方法的有效性和适用性。分析基准以证明所提出的刀具路径规划方法的有效性和鲁棒性,并且使用熔融沉积建模(FDM)和直接金属沉积(DMD)技术进行了两个物理实验。非生产性刀具路径显着减少,并且非金属和金属结构均可达到所需的制造质量。对于较小的切片间隔,可以很好地保持所提出的优化方法的有效性和适用性。分析基准以证明所提出的刀具路径规划方法的有效性和鲁棒性,并且使用熔融沉积建模(FDM)和直接金属沉积(DMD)技术进行了两个物理实验。非生产性刀具路径显着减少,并且非金属和金属结构均可达到所需的制造质量。并使用熔融沉积建模(FDM)和直接金属沉积(DMD)技术进行了两个物理实验。非生产性刀具路径显着减少,并且非金属和金属结构均可达到所需的制造质量。并使用熔融沉积建模(FDM)和直接金属沉积(DMD)技术进行了两个物理实验。非生产性刀具路径显着减少,并且非金属和金属结构均可达到所需的制造质量。

更新日期:2020-09-01
down
wechat
bug