当前位置: X-MOL 学术J. Min. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elastic Wave Attenuation Characteristics and Relevance for Rock Microstructures
Journal of Mining Science ( IF 0.7 ) Pub Date : 2020-03-01 , DOI: 10.1134/s1062739120026674
X. L. Liu , M. S. Han , X. B. Li , J. H. Cui , Z. Liu

We investigated elastic wave attenuation characteristics using a PCI-2 acoustic emission system. A lead-break test was employed to carry out attenuation experiments in granite, marble, red sandstone, and limestone. Because the centroid frequency variation of the red sandstone differs significantly from the other rocks, a pendulum steel ball impact test was also performed to study the attenuation characteristics of elastic waves in red sandstone. The results show that the elastic wave signal amplitude decreases with increasing propagation distance for all four rock types. In granite and red sandstone, the peak frequency of the elastic wave declines abruptly after the propagation exceeds 800 and 100 mm, respectively, and remains almost unchanged in marble and limestone. The attenuation of centroid frequency in granite, limestone, and marble shows the same trend; however, in red sandstone, when the elastic wave propagation exceeds a certain distance, the variation of centroid frequency shows an upward tendency. The main influence of elastic wave attenuation in rock is the packing state of mineral particles: less tightly packed rocks consistently have a higher attenuation coefficient. The secondary cause of attenuation is the development of structures such as joints and stratifications. More developed interior structures lead to higher attenuation coefficients. Sensor selection is also very important in rock attenuation tests. We recommend use of a wide resonant frequency sensor or sensors with different resonant frequencies along the elastic wave propagation path.

中文翻译:

弹性波衰减特性与岩石显微结构的相关性

我们使用 PCI-2 声发射系统研究了弹性波衰减特性。采用断铅试验对花岗岩、大理石、红砂岩和石灰岩进行衰减试验。由于红砂岩质心频率变化与其他岩石明显不同,还进行了摆锤钢球冲击试验,研究了红砂岩中弹性波的衰减特性。结果表明,四种岩石类型的弹性波信号幅度随着传播距离的增加而减小。在花岗岩和红砂岩中,弹性波的峰值频率分别在传播超过 800 和 100 mm 后急剧下降,而在大理石和石灰岩中几乎保持不变。花岗岩、石灰岩中质心频率的衰减,和大理石呈现出同样的趋势;然而,在红砂岩中,当弹性波传播超过一定距离时,质心频率的变化呈上升趋势。岩石中弹性波衰减的主要影响是矿物颗粒的堆积状态:堆积越不紧密的岩石始终具有较高的衰减系数。衰减的次要原因是节理和分层等结构的发展。更发达的内部结构导致更高的衰减系数。传感器选择在岩石衰减测试中也非常重要。我们建议沿弹性波传播路径使用宽谐振频率传感器或具有不同谐振频率的传感器。质心频率的变化呈上升趋势。岩石中弹性波衰减的主要影响是矿物颗粒的堆积状态:堆积得越不紧密的岩石始终具有较高的衰减系数。衰减的次要原因是节理和分层等结构的发展。更发达的内部结构导致更高的衰减系数。传感器选择在岩石衰减测试中也非常重要。我们建议沿弹性波传播路径使用宽谐振频率传感器或具有不同谐振频率的传感器。质心频率变化呈上升趋势。岩石中弹性波衰减的主要影响是矿物颗粒的堆积状态:堆积越不紧密的岩石始终具有较高的衰减系数。衰减的次要原因是节理和分层等结构的发展。更发达的内部结构导致更高的衰减系数。传感器选择在岩石衰减测试中也非常重要。我们建议沿弹性波传播路径使用宽谐振频率传感器或具有不同谐振频率的传感器。衰减的次要原因是节理和分层等结构的发展。更发达的内部结构导致更高的衰减系数。传感器选择在岩石衰减测试中也非常重要。我们建议沿弹性波传播路径使用宽谐振频率传感器或具有不同谐振频率的传感器。衰减的次要原因是节理和分层等结构的发展。更发达的内部结构导致更高的衰减系数。传感器选择在岩石衰减测试中也非常重要。我们建议沿弹性波传播路径使用宽谐振频率传感器或具有不同谐振频率的传感器。
更新日期:2020-03-01
down
wechat
bug