当前位置: X-MOL 学术Bull. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile low-temperature synthesis of W-rich Cu1−xZnxWO4 nanoparticles and the electrochemical performance
Bulletin of Materials Science ( IF 1.8 ) Pub Date : 2020-09-02 , DOI: 10.1007/s12034-020-02228-x
V Balasubramanian , T Daniel , J Henry , G Sivakumar , K Mohanraj

This paper reports the facile low-temperature synthesis of Cu1−xZnxWO4 nanoparticles by varying the concentration of Zn using solid-state reaction method. The incorporation of various Zn concentrations can alter the valence band energy and enhance the structural, optical and electrochemical properties. The prepared nanoparticles have a triclinic crystal structure with minimum strain. The variation in zinc concentration is shown by the densely aggregated particles in the SEM image. These nanoparticles exhibit strong absorption in the visible region and the bandgap is found to increase with an increase in Zn concentration. The photocurrent density increases with an increase in the concentration of zinc and found to be a maximum of 8.5 µA cm−2 for x = 0.4 due to a lower bandgap of 2.65 eV. Finally, it is observed that an optimum zinc concentration promotes improved photocurrent generation.

中文翻译:

富WCu1−xZnxWO4纳米粒子的低温合成及其电化学性能

本文报道了使用固态反应方法通过改变 Zn 浓度来轻松低温合成 Cu1-xZnxWO4 纳米颗粒。各种Zn浓度的掺入可以改变价带能量并增强结构、光学和电化学性质。制备的纳米颗粒具有应变最小的三斜晶体结构。SEM 图像中紧密聚集的颗粒显示了锌浓度的变化。这些纳米颗粒在可见光区表现出强吸收,并且发现带隙随着 Zn 浓度的增加而增加。光电流密度随着锌浓度的增加而增加,并且由于 2.65 eV 的较低带隙,发现 x = 0.4 时最大为 8.5 µA cm-2。最后,
更新日期:2020-09-02
down
wechat
bug