当前位置: X-MOL 学术IEEE Trans. Intell. Transp. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic System Optimum Analysis of Multi-Region Macroscopic Fundamental Diagram Systems With State-Dependent Time-Varying Delays
IEEE Transactions on Intelligent Transportation Systems ( IF 7.9 ) Pub Date : 2020-09-01 , DOI: 10.1109/tits.2020.2994347
Renxin Zhong , Jianhui Xiong , Yunping Huang , Agachai Sumalee , Andy H. F. Chow , Tianlu Pan

This paper investigates the dynamic system optimum (DSO) problem with simultaneous route and departure time assignments for a general traffic network partitioned into multiple regions. Regional traffic congestion is modeled with a well-defined macroscopic fundamental diagram (MFD) mapping the trip completion rate to the vehicular accumulation. To overcome the limitation of inconsistent flow propagation between region boundaries and the corresponding travel time, the state-dependent regional travel time function is explicitly incorporated in the flow propagation of the conventional MFD dynamics. From a systems perspective, the traffic dynamics within a region can be regarded as a dynamic system with an endogenous time-varying delay depending on the system state. Equilibrium condition for the DSO problem is analytically derived through the lens of Pontryagin minimum principle and is compared against the static SO counterpart. The structure of path specific marginal cost is analyzed regarding the path travel cost and early-late penalty function. In contrast to existing analytical methods, the proposed method is applicable for general MFD systems without linearization of the MFD dynamics. Neither approximation of the equilibrium solution nor constant regional delay assumption is required. Numerical examples are conducted to illustrate the characteristics of DSO traffic equilibrium and the corresponding marginal cost together with other dynamic external costs.

中文翻译:

具有状态相关时变时滞的多区域宏观基本图系统的动态系统优化分析

本文研究了动态系统优化 (DSO) 问题,同时为划分为多个区域的一般交通网络分配路线和出发时间。区域交通拥堵用定义明确的宏观基本图 (MFD) 建模,将行程完成率映射到车辆累积。为了克服区域边界和相应旅行时间之间不一致的流动传播的限制,状态相关的区域旅行时间函数被明确地纳入到传统 MFD 动力学的流动传播中。从系统的角度来看,一个区域内的交通动态可以看作是一个动态系统,其内生时延取决于系统状态。DSO 问题的平衡条件是通过 Pontryagin 最小原理的镜头解析导出的,并与静态 SO 对应物进行比较。从路径旅行成本和早晚惩罚函数分析了路径特定边际成本的结构。与现有的分析方法相比,所提出的方法适用于没有 MFD 动力学线性化的一般 MFD 系统。既不需要平衡解的近似值,也不需要恒定区域延迟假设。数值例子说明了DSO交通均衡的特征和相应的边际成本以及其他动态外部成本。从路径旅行成本和早晚惩罚函数分析了路径特定边际成本的结构。与现有的分析方法相比,所提出的方法适用于没有 MFD 动力学线性化的一般 MFD 系统。既不需要平衡解的近似值,也不需要恒定区域延迟假设。数值例子说明了DSO交通均衡的特征和相应的边际成本以及其他动态外部成本。从路径旅行成本和早晚惩罚函数分析了路径特定边际成本的结构。与现有的分析方法相比,所提出的方法适用于没有 MFD 动力学线性化的一般 MFD 系统。既不需要平衡解的近似值,也不需要恒定区域延迟假设。数值例子说明了DSO交通均衡的特征和相应的边际成本以及其他动态外部成本。
更新日期:2020-09-01
down
wechat
bug