当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid and inexpensive microfluidic electrode integration with conductive ink.
Lab on a Chip ( IF 6.1 ) Pub Date : 2020-09-01 , DOI: 10.1039/d0lc00763c
David McIntyre 1 , Ali Lashkaripour 1 , Douglas Densmore 2
Affiliation  

Electrode integration significantly increases the versatility of droplet microfluidics, enabling label-free sensing and manipulation at a single-droplet (single-cell) resolution. However, common fabrication techniques for integrating electronics into microfluidics are expensive, time-consuming, and can require cleanroom facilities. Here, we present a simple and cost-effective method for integrating electrodes into thermoplastic microfluidic chips using an off-the-shelf conductive ink. The developed conductive ink electrodes cost less than $10 for an entire chip, have been shown here in channel geometries as small as 75 μm by 50 μm, and can go from fabrication to testing within a day without a cleanroom. The geometric fabrication limits of this technique were explored over time, and proof-of-concept microfluidic devices for capacitance sensing, droplet merging, and droplet sorting were developed. This novel method complements existing rapid prototyping systems for microfluidics such as micromilling, laser cutting, and 3D printing, enabling their wider use and application.

中文翻译:

快速和廉价的微流体电极与导电油墨的集成。

电极集成显着提高了微滴微滴的多功能性,可在单微滴(单细胞)分辨率下实现无标记的感应和操作。然而,将电子集成到微流体中的常规制造技术昂贵,费时,并且可能需要洁净室设施。在这里,我们提出了一种使用现成的导电油墨将电极集成到热塑性微流体芯片中的简单且经济高效的方法。对于整个芯片,开发的导电油墨电极的成本不到10美元,此处显示的通道几何尺寸小至75μm×50μm,并且可以在一天之内从制造到测试,而无需洁净室。随着时间的流逝,探索了这项技术的几何制造极限,并提出了用于电容感应的概念验证微流体设备,进行了液滴合并和液滴分选。这种新颖的方法补充了微流体,激光切割和3D打印等微流体技术的现有快速原型系统,从而使其得以更广泛地应用。
更新日期:2020-10-13
down
wechat
bug