当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the In Situ Nature of the Active Site in Catalysis.
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2020-09-01 , DOI: 10.1021/acs.accounts.0c00340
Saurabh Bhandari 1 , Srinivas Rangarajan 1 , Manos Mavrikakis 1
Affiliation  

Microkinetic modeling based on density functional theory (DFT) derived energetics is important for addressing fundamental questions in catalysis. The quantitative fidelity of microkinetic models (MKMs), however, is often insufficient to conclusively infer the mechanistic details of a specific catalytic system. This can be attributed to a number of factors such as an incorrect model of the active site for which DFT calculations are performed, deficiencies in the hypothesized reaction mechanism, inadequate consideration of the surface environment under reaction conditions, and intrinsic errors in the DFT exchange-correlation functional. Despite these limitations, we aim at developing a rigorous understanding of the reaction mechanism and of the nature of the active site for heterogeneous catalytic chemistries under reaction conditions. By achieving parity between experimental and modeling outcomes through robust parameter estimation and by ensuring coverage-consistency between DFT calculations and MKM predictions, it is possible to systematically refine the mechanistic model and, thereby, our understanding of the catalytic active site in situ.

中文翻译:

计算模型与反应动力学实验相结合,阐明了催化活性位点的原位性质。

基于密度泛函理论(DFT)衍生的能量学的微动力学建模对于解决催化中的基本问题非常重要。但是,微动力学模型(MKM)的定量保真度通常不足以最终推断出特定催化系统的机理细节。这可能归因于许多因素,例如执行DFT计算的活动位点模型不正确,假设的反应机理存在缺陷,反应条件下对表面环境的考虑不足以及DFT交换中的固有错误-相关功能。尽管有这些限制,我们的目标还是要对反应机理和反应条件下非均相催化化学活性位点的性质有一个严格的了解。原位
更新日期:2020-09-15
down
wechat
bug